网上PoPoQQQ的课件:

•题目大意:求第k个无平方因子数
•无平方因子数(Square-Free Number),即分解之后所有质因数的次数都为1的数
•首先二分答案 问题转化为求[1,x]之间有多少个无平方因子数
•根据容斥原理可知 对于sqrt(x)以内所有的质数 有
•  x以内的无平方因子数
•=0个质数乘积的平方的倍数的数的数量(1的倍数)
•-每个质数的平方的倍数的数的数量(9的倍数,25的倍数,...)
•+每2个质数乘积的平方的倍数的数的数量(36的倍数,100的倍数,...)-...
 
每个乘积$a$前的符号恰好是$\mu(a)$(这点很关键)
$x$以内$i^2$的倍数有$\left \lfloor \frac{x}{i^2} \right \rfloor$个,所以$Q(x)=\sum_{i=1}^{\left \lfloor \sqrt{x} \right \rfloor} \mu(i) \left \lfloor \frac{x}{i^2} \right \rfloor$
像上面说的那样,二分一下$x$查找第$k$小的$x$即可
#include<cmath>
#include<cstdio>
using namespace std;
typedef long long LL;
const int MAXN=50003;
int p[MAXN],pcnt=0,mu[MAXN],n;
bool notp[MAXN];
void shai(){
mu[1]=1;
for(int i=2;i<=50000;++i){
if (notp[i]==0){
p[++pcnt]=i;
mu[i]=-1;
}
for (int j=1,t=p[j]*i;j<=pcnt&&t<=50000;++j,t=p[j]*i){
notp[t]=1;
if (i%p[j]==0){
mu[t]=0;
break;
}else
mu[t]=-mu[i];
}
}
}
LL work(LL x){
LL s=0; int t=sqrt(x);
for(int i=1;i<=t;++i)
s+=x/(i*i)*mu[i];
return s;
}
int main(){
shai();
int T;
LL K,left,right,mid;
scanf("%d",&T);
while (T--){
scanf("%lld",&K);
left=K; right=1644934081;
while (left<right){
mid=(left+right)>>1;
if (work(mid)>=K) right=mid;
else left=mid+1;
}
printf("%lld\n",left);
}
return 0;
}

这样就行啦

【BZOJ 2440】【中山市选 2011】完全平方数 莫比乌斯函数+容斥原理的更多相关文章

  1. Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...

  2. BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数

    BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...

  3. BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)

    题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...

  4. BZOJ 2440 [中山市选2011]完全平方数 ——莫比乌斯函数

    $\sum_{i=1}^n[i==d^2*p]$ 其中p无平方因子$=\sum_{d^2\mid n,d>=2}\sum_{i=1}^{\lfloor {n/d^2} \rfloor} \lef ...

  5. BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )

    先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...

  6. BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4805  Solved: 2325[Submit][Sta ...

  7. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  8. 【BZOJ 2440】 2440: [中山市选2011]完全平方数 (二分+容斥原理+莫比乌斯函数)

    2440: [中山市选2011]完全平方数 Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数 ...

  9. [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】

    题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...

  10. bzoj 2440: [中山市选2011]完全平方数【莫比乌斯函数+二分】

    二分答案,然后用莫比乌斯函数作为容斥系数,计算当前枚举的mid内有几个满足要求的数 #include<iostream> #include<cstdio> #include&l ...

随机推荐

  1. C# Interlocked 笔记

    无锁代码下,在读写字段时使用内存屏障往往是不够的.在 64 位字段上进行加.减操作需要使用Interlocked工具类这样更加重型的方式.Interlocked也提供了Exchange和Compare ...

  2. java 22 - 3 多线程的概述以及其它所涉及的东西(看)

    1:要想了解多线程,必须先了解线程,而要想了解线程,必须先了解进程,因为线程是依赖于进程而存在. 2:什么是进程? 通过任务管理器我们就看到了进程的存在. 而通过观察,就可以发现只有运行的程序才会出现 ...

  3. Eclipse调整双击选取的字符颜色背景

    Eclipse调整双击选取的字符颜色背景,如下图所示: 会有二点影响: 1. 编辑页的颜色 2. 右侧滚动条的小提示点的颜色.

  4. 使用SQL如何把用逗号等字符隔开的字符串转换成列表(转)

    如何把用逗号等字符隔开的字符串转换成列表,下面依逗号分隔符为例: 比如有一个字符串,其值为:香港,张家港,北京,上海用SQL把这个字符串转换成列表的方法是: 1.方法一 WITH A AS (SELE ...

  5. javascript数组对象排序

    javascript数组对象排序 JavaScript数组内置排序函数 javascript内置的sort函数是多种排序算法的集合 JavaScript实现多维数组.对象数组排序,其实用的就是原生的s ...

  6. css3属性书写顺序

    今天写了个小demo想要利用transition 和transform以及transition-delay来实现鼠标移上去的延时动画,结果发现不能实现transition的变化效果.调试后发现只有把 ...

  7. Spring Security笔记:解决CsrfFilter与Rest服务Post方式的矛盾

    基于Spring Security+Spring MVC的web应用,为了防止跨站提交攻击,通常会配置csrf,即: <http ...> ... <csrf /> </ ...

  8. mac里git项目删除.DS_Store文件

    用mac开发项目,每次提交文件时都生成修改文件的.DS_Store文件,提交时会不会觉得比较烦?别急,下面给出解决方案.我们需要用到.gitignore文件去配置Git目录中需要忽略的文件. .git ...

  9. 2013级软件工程GitHub账号信息

    GitHub账号信息 序号 班级 学号 姓名 个人GitHub网址 1 信1301-1班 20122951 刘伟 https://github.com/weige8882 2 信1301-1班 201 ...

  10. FineUI小技巧(1)简单的购物车页面

    起因 最初是一位 FineUI 网友对购物车功能的需求,需要根据产品单价和数量来计算所有选中商品的总价. 这个逻辑最好在前台使用JavaScript实现,如果把这个逻辑移动到后台C#实现,则会导致过多 ...