nyoj 737 石子合并(一)。区间dp
http://acm.nyist.net/JudgeOnline/problem.php?pid=737
数据很小,适合区间dp的入门
对于第[i, j]堆,无论你怎么合并,无论你先选哪两堆结合,当你把[i, j]合成一堆的那一步的时候,花费肯定就是sum[i....j]
可以用纸模拟下。
那么我们设dp[i][j]表示把i...j堆合成一堆的时候的最小花费。
比如dp[1][1] = 0。dp[1][2] = a[1] + a[2];
那么要求dp[i][j],则可以是dp[i][k] + dp[k + 1][j] + cost
注意dp的时候的顺序,因为要求dp[1][n],则需要用到dp[1][k]和dp[k][n]
你需要考虑下怎么for,才能使得子问题已经被算出,建议一开始用dfs + 记忆化做。
这里dp的顺序应该是先算出2个集合的,3个、4个、......
就是先算出dp[1][2], dp[2][3],这使得求dp[1][3]成为可能。
all dp[i][i] = 0
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <assert.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL; #include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string> const int maxn = + ;
int n;
int a[maxn];
int dp[maxn][maxn];
int sum[maxn];
int dfs(int be, int en) {
if (be > en) return ;
if (be == en) {
return dp[be][en] = ;
}
if (dp[be][en] != inf) return dp[be][en];
for (int k = be; k <= en; ++k) {
dp[be][k] = dfs(be, k);
dp[k + ][en] = dfs(k + , en);
assert(dp[be][k] >= );
assert(dp[k + ][en] >= );
dp[be][en] = min(dp[be][k] + dp[k + ][en] + sum[en] - sum[be - ], dp[be][en]);
// cout << dp[2][3] << endl;
}
return dp[be][en];
}
void work() {
for (int i = ; i <= n; ++i) {
scanf("%d", &a[i]);
sum[i] = sum[i - ] + a[i];
}
memset(dp, , sizeof dp);
// cout << dfs(1, n) << endl;
// cout << dp[2][3] << endl;
for (int k = ; k <= n - ; ++k) {
for (int i = ; i <= n - ; ++i) {
int be = i;
int en = i + k;
if (en > n) break;
dp[be][en] = inf;
for (int h = be; h <= en - ; ++h) {
dp[be][en] = min(dp[be][en], dp[be][h] + dp[h + ][en] + sum[en] - sum[be - ]);
}
}
}
printf("%d\n", dp[][n]);
} int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
while (scanf("%d", &n) != EOF) work();
return ;
}
平行四边形优化,其实我还不是很懂。那个证明太难了。
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <assert.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL; #include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
int n;
const int maxn = 1e3 + ;
int dp[maxn][maxn];
int s[maxn][maxn];
int sum[maxn];
void work() {
for (int i = ; i <= n; ++i) {
int x;
scanf("%d", &x);
sum[i] = sum[i - ] + x;
dp[i][i] = ;
s[i][i] = i;
}
for (int dis = ; dis <= n - ; ++dis) {
for (int be = ; be + dis <= n; ++be) {
int en = be + dis;
dp[be][en] = inf;
int t = s[be][en];
for (int k = s[be][en - ]; k <= s[be + ][en]; ++k) {
if (k + > en) break;
if (dp[be][en] >= dp[be][k] + dp[k + ][en] + sum[en] - sum[be - ]) {
dp[be][en] = dp[be][k] + dp[k + ][en] + sum[en] - sum[be - ];
t = k;
}
}
s[be][en] = t;
}
}
cout << dp[][n] << endl;
}
int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
while (scanf("%d", &n) != EOF) work();
return ;
}
简单来说,就是设s[i][j]表示第i---j堆石子合并的时候,在第s[i][j]那里合并,是最优的。
那么可以证明的是:s[i][j - 1] <= s[i][j] <= s[i + 1][j]
那么只需要枚举里面的值就好了。
nyoj 737 石子合并(一)。区间dp的更多相关文章
- nyoj 737 石子合并(区间DP)
737-石子合并(一) 内存限制:64MB 时间限制:1000ms 特判: No通过数:28 提交数:35 难度:3 题目描述: 有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为 ...
- nyoj 737 石子合并 经典区间 dp
石子合并(一) 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆 ...
- 题解报告:NYOJ #737 石子合并(一)(区间dp)
描述 有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆.求出总的代价最小值 ...
- nyoj 737 石子合并 http://blog.csdn.net/wangdan11111/article/details/45032519
http://blog.csdn.net/wangdan11111/article/details/45032519 http://acm.nyist.net/JudgeOnline/problem. ...
- 洛谷P1880 石子合并(区间DP)(环形DP)
To 洛谷.1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1 ...
- 直线石子合并(区间DP)
石子合并 时间限制:1000 ms | 内存限制:65535 KB 描述有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费 ...
- CH5301 石子合并【区间dp】
5301 石子合并 0x50「动态规划」例题 描述 设有N堆沙子排成一排,其编号为1,2,3,…,N(N<=300).每堆沙子有一定的数量,可以用一个整数来描述,现在要将这N堆沙子合并成为一堆, ...
- zjnu 1181 石子合并(区间DP)
Description 在操场上沿一直线排列着 n堆石子. 现要将石子有次序地合并成一堆.规定每次仅仅能选相邻的两堆石子合并成新的一堆, 并将新的一堆石子数记为该次合并的得分.同意在第一次合并前对调一 ...
- 石子合并(区间dp)
石子合并(一) 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描写叙述 有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程仅仅能每次将相邻 ...
随机推荐
- latch: cache buffers chains故障处理总结(转载)
一大早就接到开发商的电话,说数据库的CPU使用率为100%,应用相应迟缓.急匆匆的赶到现场发现进行了基本的检查后发现是latch: cache buffers chains 作祟,处理过程还算顺利,当 ...
- HTML、html
1.HTTPS(超文本传输协议,HyperText Transfer Protocol) 超文本传输协议HTTP协议被用于在Web浏览器和网站服务器之间传递信息.HTTP协议以明文方式发 ...
- javascript_获取浏览器属性
navigator.appName:浏览器名称: navigator.appVersion:浏览器版本: navigator.language:浏览器设置的语言: navigator.platform ...
- Spring MVC 4.2 增加 CORS 支持 Cross-Origin
基于XML的配置: <mvc:cors> <mvc:mapping path="/api/**" allowed-origins="http://dom ...
- 基于SVG的web页面图形绘制API介绍
转自:http://blog.csdn.net/jia20003/article/details/9185449 一:什么是SVG SVG是1999由W3C发布的2D图形描述语言,纯基于XML格式的标 ...
- JavaScript常用函数和方法
alert('Hello World!') //方法用于显示带有一条指定消息和一个 OK 按钮的警告框. //定义js函数 function Foo(name) { console.log(name) ...
- 【AT91SAM3S】SAM3S-EK Demo工程中,LCD驱动程序的加载(函数指针结构体)
为了调试LCD,在英倍特的板子上烧Atmel的sam3s-ek_demo_1.4_source示例代码.LCD显示正常了,却找不到LCD的驱动究竟在哪. 花了好久,追踪到了这个执行过程. 进入main ...
- 【AT91SAM3S】串口UART初始化及收发数据
SAM3S中的UART串口是一个两线异步收发器.这个串口能用来通信或者跟踪.有两个DMA通道与UART串口关联,可通过使用DMA处理串口传输以节省CPU时间. SAM3S4C中有两个UART.与外设引 ...
- Java为什么会引入及如何使用Unsafe
综述 sun.misc.Unsafe至少从2004年Java1.4开始就存在于Java中了.在Java9中,为了提高JVM的可维护性,Unsafe和许多其他的东西一起都被作为内部使用类隐藏起来了.但是 ...
- Python基础篇【第2篇】: Python内置函数(一)
Python内置函数 lambda lambda表达式相当于函数体为单个return语句的普通函数的匿名函数.请注意,lambda语法并没有使用return关键字.开发者可以在任何可以使用函数引用的位 ...