[分类算法] :SVM支持向量机
Support vector machines 支持向量机,简称SVM
- 分类算法的目的是学会一个分类函数或者分类模型(分类器),能够把数据库中的数据项映射给定类别中的某一个,从而可以预测未知类别。
- SVM是一种监督式学习的方法。
- 支持向量:支持或支撑平面上把两类类别划分开来的超平面的向量点
- 机:就是算法,机器学习常把一些算法看作是一个机器
- SVM 其实就是一种很有用的二分类方法。
- 超平面:
n维空间中, 满足n元一次方程a1x1+a2x2+...+anxn=b的点(x1,x2,...,xn)的全体就叫空间的一张超平面(即广义平面)。
具体到2维空间,就是一条直线,3维空间,就是一个平面。
原理概况:
- 线性可分:超平面分割(超平面是分割两类数据的最优的一个平面,下图的红线表示)

2. 最大化间隔
3. 线性问题求解:
求解对偶问题得到最优解。(Lagrange 函数的对偶因子)
4. 非线性问题

通过选择一个核函数,将数据映射到高维空间(线性可分),从而来解决原有空间的线性不可分。
核方法: 除了支持向量机外,任何把计算表示为数据点的内积的方法,都可以用核方法进行非线性扩展。
例子:
import org.apache.spark.mllib.classification.{SVMModel, SVMWithSGD}
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
import org.apache.spark.mllib.util.MLUtils
// Load training data in LIBSVM format.
val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")
// Split data into training (60%) and test (40%).
val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)
val training = splits(0).cache()
val test = splits(1)
// Run training algorithm to build the model
val numIterations = 100
val model = SVMWithSGD.train(training, numIterations)
// Clear the default threshold.
model.clearThreshold()
// Compute raw scores on the test set.
val scoreAndLabels = test.map { point =>
val score = model.predict(point.features)
(score, point.label)
}
// Get evaluation metrics.
val metrics = new BinaryClassificationMetrics(scoreAndLabels)
val auROC = metrics.areaUnderROC()
println("Area under ROC = " + auROC)
[分类算法] :SVM支持向量机的更多相关文章
- SparkMLlib分类算法之支持向量机
SparkMLlib分类算法之支持向量机 (一),概念 支持向量机(support vector machine)是一种分类算法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最 ...
- 分类算法SVM(支持向量机)
支持向量机(Support Vector Machine ,SVM)的主要思想是:建立一个最优决策超平面,使得该平面两侧距离该平面最近的两类样本之间的距离最大化,从而对分类问题提供良好的泛化能力.对于 ...
- 跟我学算法-svm支持向量机算法推导
Svm算法又称为支持向量机,是一种有监督的学习分类算法,目的是为了找到两个支持点,用来使得平面到达这两个支持点的距离最近. 通俗的说:找到一条直线,使得离该线最近的点与该线的距离最远. 我使用手写进行 ...
- 机器学习 - 算法 - SVM 支持向量机
SVM 原理引入 支持向量机( SVM,Support Vector Machine ) 背景 2012年前较为火热, 但是在12年后被神经网络逼宫, 由于应用场景以及应用算法的不同, SVM还是需要 ...
- 跟我学算法-SVM(支持向量机)
支持向量机是一个点离决策边界越近,离决策面越远的问题 求解的过程主要是通过拉格朗日乘子法,来求解带约束的优化问题,在问题中涉及两个方面,一个是线性的,一个是非线性的,非线性的有 我们平时比较常见的高斯 ...
- 机器学习 - 算法 - SVM 支持向量机 Py 实现 / 人脸识别案例
SVM 代码实现展示 相关模块引入 %matplotlib inline import numpy as np import matplotlib.pyplot as plt from scipy i ...
- 【机器学习算法-python实现】svm支持向量机(1)—理论知识介绍
(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景 强烈推荐阅读(http://www.cnblogs.com/jerrylead/archiv ...
- SVM(支持向量机)算法
第一步.初步了解SVM 1.0.什么是支持向量机SVM 要明白什么是SVM,便得从分类说起. 分类作为数据挖掘领域中一项非常重要的任务,它的目的是学会一个分类函数或分类模型(或者叫做分类器),而支持向 ...
- 各常用分类算法的优缺点总结:DT/ANN/KNN/SVM/GA/Bayes/Adaboosting/Rocchio
1决策树(Decision Trees)的优缺点 决策树的优点: 一. 决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义. 二. 对于决策树,数据的准备往往是简单或者是不必要的. ...
随机推荐
- JavaScript Math 对象
JavaScript Math 对象 Math 对象 Math 对象用于执行数学任务. Math 对象并不像 Date 和 String 那样是对象的类,因此没有构造函数 Math(). 语法 var ...
- Types of intraclass correlation coefficience (ICC)
Reference: Andellini M, Cannatà V, Gazzellini S, et al. Test-retest reliability of graph metrics of ...
- JS添加DOM元素CSS权重BUG
修改删除table的时候,比如拆分合并单元格,合并全部TR中的某个TD后在拆分还原,即使直接在td标签中设置了td的高宽属性,当td在css文件中设置为宽度auto的时候,不能显示出TD来,显示TD宽 ...
- codevs1958 刺激
难度等级:黄金 1958 刺激 题目描述 Description saffah的一个朋友S酷爱滑雪,并且追求刺激(exitement,由于刺激过度导致拼写都缺了个字母),喜欢忽高忽低的感觉.现在S拿到 ...
- &11,散列表
#1,是什么? 散列表(Hash table,也叫哈希表),是根据关键码值(Key value)而直接进行访问的数据结构.也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度.这个 ...
- java 中的异步回调
异步回调,本来在c#中是一件极为简单和优雅的事情,想不到在java的世界里,却如此烦琐,先看下类图: 先定义了一个CallBackTask,做为外层的面子工程,其主要工作为start 开始一个异步操作 ...
- hadoop:将WordCount打包成独立运行的jar包
hadoop示例中的WordCount程序,很多教程上都是推荐以下二种运行方式: 1.将生成的jar包,复制到hadoop集群中的节点,然后运行 $HADOOP_HOME/bin/hadoop xxx ...
- 安装mint的时候提示:Not compatible with your operating system or architecture: fsevents@1.0.11
Since fsevents is an API in OS X allows applications to register for notifications of changes to a g ...
- "Timeout"在测试框架里是如何被实现的
今天组里的小伙伴问了我一个问题:“我这里有一个底层驱动的接口,我想在测试它的时候加上超时限制,时间一过就fail掉它,执行后面的测试用例.怎么办到呢?”.我问:“它自己没有超时响应的机制么? 超时抛e ...
- typedef 和define的区别
总结一下typedef和#define的区别 1.概念 #define 它在编译预处理时进行简单的替换,不作正确性检查.它是预处理指令. typedef 它在自己的作用域内给一个已经存在的类型一个别名 ...