Support vector machines 支持向量机,简称SVM

  • 分类算法的目的是学会一个分类函数或者分类模型(分类器),能够把数据库中的数据项映射给定类别中的某一个,从而可以预测未知类别。
  • SVM是一种监督式学习的方法。
  • 支持向量:支持或支撑平面上把两类类别划分开来的超平面的向量点
  • 机:就是算法,机器学习常把一些算法看作是一个机器
  • SVM 其实就是一种很有用的二分类方法。
  • 超平面:

n维空间中, 满足n元一次方程a1x1+a2x2+...+anxn=b的点(x1,x2,...,xn)的全体就叫空间的一张超平面(即广义平面)。

具体到2维空间,就是一条直线,3维空间,就是一个平面。

原理概况:

  1. 线性可分:超平面分割(超平面是分割两类数据的最优的一个平面,下图的红线表示)

  2. 最大化间隔

  3. 线性问题求解:

求解对偶问题得到最优解。(Lagrange 函数的对偶因子)

4. 非线性问题

          

通过选择一个核函数,将数据映射到高维空间(线性可分),从而来解决原有空间的线性不可分。

核方法: 除了支持向量机外,任何把计算表示为数据点的内积的方法,都可以用核方法进行非线性扩展。

例子:

import org.apache.spark.mllib.classification.{SVMModel, SVMWithSGD}
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
import org.apache.spark.mllib.util.MLUtils // Load training data in LIBSVM format.
val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")
// Split data into training (60%) and test (40%).
val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)
val training = splits(0).cache()
val test = splits(1) // Run training algorithm to build the model
val numIterations = 100
val model = SVMWithSGD.train(training, numIterations) // Clear the default threshold.
model.clearThreshold() // Compute raw scores on the test set.
val scoreAndLabels = test.map { point =>
val score = model.predict(point.features)
(score, point.label)
} // Get evaluation metrics.
val metrics = new BinaryClassificationMetrics(scoreAndLabels)
val auROC = metrics.areaUnderROC()
println("Area under ROC = " + auROC)

  

[分类算法] :SVM支持向量机的更多相关文章

  1. SparkMLlib分类算法之支持向量机

    SparkMLlib分类算法之支持向量机 (一),概念 支持向量机(support vector machine)是一种分类算法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最 ...

  2. 分类算法SVM(支持向量机)

    支持向量机(Support Vector Machine ,SVM)的主要思想是:建立一个最优决策超平面,使得该平面两侧距离该平面最近的两类样本之间的距离最大化,从而对分类问题提供良好的泛化能力.对于 ...

  3. 跟我学算法-svm支持向量机算法推导

    Svm算法又称为支持向量机,是一种有监督的学习分类算法,目的是为了找到两个支持点,用来使得平面到达这两个支持点的距离最近. 通俗的说:找到一条直线,使得离该线最近的点与该线的距离最远. 我使用手写进行 ...

  4. 机器学习 - 算法 - SVM 支持向量机

    SVM 原理引入 支持向量机( SVM,Support Vector Machine ) 背景 2012年前较为火热, 但是在12年后被神经网络逼宫, 由于应用场景以及应用算法的不同, SVM还是需要 ...

  5. 跟我学算法-SVM(支持向量机)

    支持向量机是一个点离决策边界越近,离决策面越远的问题 求解的过程主要是通过拉格朗日乘子法,来求解带约束的优化问题,在问题中涉及两个方面,一个是线性的,一个是非线性的,非线性的有 我们平时比较常见的高斯 ...

  6. 机器学习 - 算法 - SVM 支持向量机 Py 实现 / 人脸识别案例

    SVM 代码实现展示 相关模块引入 %matplotlib inline import numpy as np import matplotlib.pyplot as plt from scipy i ...

  7. 【机器学习算法-python实现】svm支持向量机(1)—理论知识介绍

    (转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景      强烈推荐阅读(http://www.cnblogs.com/jerrylead/archiv ...

  8. SVM(支持向量机)算法

    第一步.初步了解SVM 1.0.什么是支持向量机SVM 要明白什么是SVM,便得从分类说起. 分类作为数据挖掘领域中一项非常重要的任务,它的目的是学会一个分类函数或分类模型(或者叫做分类器),而支持向 ...

  9. 各常用分类算法的优缺点总结:DT/ANN/KNN/SVM/GA/Bayes/Adaboosting/Rocchio

    1决策树(Decision Trees)的优缺点 决策树的优点: 一. 决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义. 二. 对于决策树,数据的准备往往是简单或者是不必要的. ...

随机推荐

  1. 1D1D动态规划优化初步

    再学习一下动态规划的基本优化方法- 首先这篇文章应该大家都看过吧-没看过的自行百度 关于实现的思路文章里都给好了-这篇就主要给一点题目啥的 (P.S. 电脑重装了,如果博客发出来有一些奇怪的问题不要在 ...

  2. SPM paired t-test步骤

    首先感谢大神空里流霜耐心的讲解,这篇笔记内容主要是整理他的谆谆教导,虽然他也看不到>< 所有数据都要经过平滑. Paired t-test虽然在2nd-level analysis中,但是 ...

  3. ios开发--多台电脑共用一个开发证书的方法

    Xcode5 以前的操作步骤是: idp证书如何给另一台机子使用 先在原电脑上用Xcode->Windows->Organizer, 再点击Developer profile, 在其最下面 ...

  4. 【转】让Bootstrap 3兼容IE8浏览器

    FROM : http://www.ijophy.com/2014/05/bootstrap3-compatible-with-ie8.html 最近在研究Bootstrap(官方,Github)这个 ...

  5. AI: Jarvis

    AI: Jarvis   扎克伯格本周二在facebook发布了一篇文章,介绍自己利用个人时间开发的一套在自己家里使用的AI系统,并将它命名为Jarvis,对!就是电影钢铁侠里的AI助手Jarvis. ...

  6. oracle: job使用

    oracle的job,实际上就是数据库内置的定时任务,类似代码中的Timer功能.下面是使用过程: 这里我们模拟一个场景:定时调用存储过程P_TEST_JOB 向表TEST_JOB_LOG中插入数据 ...

  7. flask+sqlite3+echarts2+ajax数据可视化--静态图

    结构: /www | |-- /static | | | |-- echarts.js(当然还有echarts原dist目录下的文件(夹)) | |-- /templates | | | |-- in ...

  8. 谱多流形聚类SMMC

    今天是2015年的最后一天,决定尽量乘着这三天休息把毕设主题的博客给更完,今天写smmc的算法,接下来三天会对前面的三个算法kmeans.SC以及smmc应用在今年的研究生建模提供的数据中进行matl ...

  9. JSON简介以及用法汇总

    什么是JSON? JavaScript 对象表示法(JavaScript Object Notation). JSON是一种轻量级的数据交换格式,某个JSON格式的文件内部譬如可以长成这样: { &q ...

  10. redis性能测试tcp socket and unix domain

    UNIX Domain Socket IPC socket API原本是为网络通讯设计的,但后来在socket的框架上发展出一种IPC机制,就是UNIX Domain Socket.虽然网络socke ...