bzoj 3518 Dirichlet卷积
详情见代码,回头再填坑。。。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define int long long
#define p 1000000007
using namespace std;
int n,m;
int phi[],su[],pr[],cnt;
void shai()
{
phi[]=;
for(int j=;j<=;j++)
{
if(!phi[j])phi[j]=j-,su[++cnt]=j,pr[j]=j;
for(int i=;su[i]<=pr[j]&&i<=cnt&&su[i]*j<=;i++)
{
pr[su[i]*j]=su[i];
if(!phi[su[i]*j])phi[su[i]*j]=su[i]*j;
if(su[i]==pr[j])phi[su[i]*j]=phi[j]*su[i];
else phi[su[i]*j]=phi[j]*(su[i]-);
}
}
}
signed main()
{
shai();
scanf("%lld%lld",&n,&m);
int ans=;
ans+=n*(n-)*(n-)*m/;ans%=p;
ans+=m*(m-)*(m-)*n/;ans%=p;
int tmp=;
for(int i=;i<=min(n-,m-);i++)tmp=(tmp+m*n%p*phi[i]*((n-)/i)%p*((m-)/i))%p;
for(int i=;i<=min(n-,m-);i++)tmp=(tmp+phi[i]*i%p*i%p*(((n-)/i)*(+(n-)/i)/)%p*(((m-)/i)*(+(m-)/i)/)%p)%p;
for(int i=;i<=min(n-,m-);i++)tmp=(tmp-n*phi[i]%p*i%p*((n-)/i)%p*((((m-)/i)*(+(m-)/i)/)%p)%p+p)%p;
for(int i=;i<=min(n-,m-);i++)tmp=(tmp-m*phi[i]%p*i%p*((m-)/i)%p*((((n-)/i)*(+(n-)/i)/)%p)%p+p)%p;
tmp-=((+n-)*(n-)/)%p*((+m-)*(m-)/)%p;tmp=(tmp+p)%p;
ans=(ans+tmp*)%p;
printf("%lld\n",ans);
return ;
}
bzoj 3518 Dirichlet卷积的更多相关文章
- [基本操作] Mobius 反演, Dirichlet 卷积和杜教筛
Dirichlet 卷积是两个定义域在正整数上的函数的如下运算,符号为 $*$ $(f * g)(n) = \sum_{d|n}f(d)g(\frac{n}{d})$ 如果不强调 $n$ 可简写为 $ ...
- HDU 5628 Clarke and math Dirichlet卷积+快速幂
题意:bc round 72 中文题面 分析(官方题解): 如果学过Dirichlet卷积的话知道这玩意就是g(n)=(f*1^k)(n), 由于有结合律,所以我们快速幂一下1^k就行了. 当然,强行 ...
- 『简单积性函数和dirichlet卷积』
简单积性函数 在学习欧拉函数的时候,相信读者对积性函数的概念已经有了一定的了解.接下来,我们将相信介绍几种简单的积性函数,以备\(dirichlet\)卷积的运用. 定义 数论函数:在数论上,对于定义 ...
- Dirichlet 卷积学习笔记
Dirichlet 卷积学习笔记 数论函数:数论函数亦称算术函数,一类重要的函数,指定义在正整数集上的实值或复值函数,更一般地,也可把数论函数看做是某一整数集上定义的函数. 然而百科在说什么鬼知道呢, ...
- 积性函数与Dirichlet卷积
转载自https://oi-wiki.org/math/mobius/ 积性函数 定义 若 $gcd(x,y)=1$ 且 $f(xy)=f(x)f(y)$,则 $f(n)$ 为积性函数. 性质 若 $ ...
- 【hdu 5628】Clarke and math (Dirichlet卷积)
hdu 5628 Clarke and math 题意 Given f(i),1≤i≤n, calculate \(\displaystyle g(i) = \sum_{i_1 \mid i} \su ...
- BZOJ 3518 点组计数 ——莫比乌斯反演
要求$ans=\sum_{i=1}^n \sum_{j=1}^m (n-i)(m-j)(gcd(i,j)-1)$ 可以看做枚举矩阵的大小,然后左下右上必须取的方案数. 这是斜率单增的情况 然后大力反演 ...
- Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...
- BZOJ 2190: [SDOI2008]仪仗队
2190: [SDOI2008]仪仗队 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2689 Solved: 1713[Submit][Statu ...
随机推荐
- gitlab配置邮件通知功能操作记录
之前已经介绍了gitlab的部署http://www.cnblogs.com/kevingrace/p/5651402.html但是没有配置邮箱通知功能,今天这里介绍下gitlab安装后的邮箱配置操作 ...
- (原创)mybatis学习一,夯实基础
一,what?(是什么) MyBatis是一个支持普通SQL查询,存储过程和高级映射的优秀持久层框架.MyBatis消除了几乎所有的JDBC代码和参数的手工设置以及对结果集的检索封装.MyBatis可 ...
- Java 集合系列05之 LinkedList详细介绍(源码解析)和使用示例
概要 前面,我们已经学习了ArrayList,并了解了fail-fast机制.这一章我们接着学习List的实现类——LinkedList.和学习ArrayList一样,接下来呢,我们先对Linked ...
- salt基本原理
转载自: 来自:http://tech.mainwise.cn/?p=438 说明:salt是一个异构平台基础设置管理工具(虽然我们通常只用在Linux上),使用轻量级的通讯器 ...
- JavaScript的一些知识碎片(1)
打算把使用Javascript的水平从child提升到小学毕业,近期会持续记录一些知识点. javascript的引用机制:只要一个对象赋值为另一个对象,就建立了引用.一旦建立了引用,对象们就公用一块 ...
- git的安装以及遇到的问题
git安装以及遇到的问题 之前没有学会如何在Ubuntu下使用git,国庆放假回来后,完成了git的安装,补回来了之前没有学会的东西. 以下是我安装的过程以及遇到问题.解决问题的过程. 这次安装git ...
- 获取图片base64编码的几种方法
前文中我们聊了 Data URI 和 base64编码,稍微回顾下.base64编码 是将数据用 64 个可打印的字符进行编码的方式,任何数据底层实现都是二进制,所以都可以进行 base64编码,ba ...
- xml入门
1.why xml? 如果说JSON是一种轻量级的数据交换格式,那么xml就是重量级的.xml应用于web开发的许多方面,常用于简化数据的存储和共享.永远要记住,xml跟JSON一样是用来存储和传输数 ...
- TM4C123G红外触摸屏:开发板好不容易实现了原理,放到专家设计的板子上无法运行,于是专家跑路项目黄了
使用TI的TM4C123G LaunchPad开发板,USB接口,来对同样的芯片进行烧写. 我们只用烧写那一块功能,不用另外一个芯片的开发功能,需要跳线 源码项目: 从官方网站TM4C123G ...
- 学习Google Protocol buffer之概述
XML这种属于非常强大的一种格式,能存储任何你想存的数据,而且编辑起来还是比较方便的.致命的缺陷在于比较庞大,在某些情况下,序列化和解析都会成为瓶颈.这种对于实时性很强的应用来说,就不太适合了,想象下 ...