【BZOJ-1497】最大获利 最大流
1497: [NOI2006]最大获利
Time Limit: 5 Sec Memory Limit: 64 MB
Submit:
3800 Solved: 1848
[Submit][Status][Discuss]
Description
新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站需要的成本为Pi(1≤i≤N)。另外公司调查得出了所有期望中的用户群,一共M个。关于第i个用户群的信息概括为Ai,
Bi和Ci:这些用户会使用中转站Ai和中转站Bi进行通讯,公司可以获益Ci。(1≤i≤M, 1≤Ai, Bi≤N)
THU集团的CS&T公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利
= 获益之和 - 投入成本之和)
Input
输入文件中第一行有两个正整数N和M 。第二行中有N个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。以下M行,第(i +
2)行的三个数Ai, Bi和Ci描述第i个用户群的信息。所有变量的含义可以参见题目描述。
Output
你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。
Sample Input
1 2 3 4 5
1 2 3
2 3
4
1 3 3
1 4 2
4 5 3
Sample Output
HINT
【样例说明】选择建立1、2、3号中转站,则需要投入成本6,获利为10,因此得到最大收益4。【评分方法】本题没有部分分,你的程序的输出只有和我们的答案完全一致才能获得满分,否则不得分。【数据规模和约定】
80%的数据中:N≤200,M≤1 000。 100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。
Source
Solution
非常显然的一个最小割模型:最大权闭合子图
若a,b之间有一条收益为c的边,则新建一个点,点权为c,分别向a,b连边,a,b点权为他们的花费,这样转换成求最大权闭合子图
那么最大权闭合子图模型:
原图中的边,容量为inf
S向正权点连边,容量为点权
负权点向T连边,容量为点权的相反数
大题的思路:
假设选取所有的正权点,那么在S处割表示删掉一个正权点,在T处割表示加入一个负权点
使删掉的正权和加上的负权最小,转化成一个最小的问题
那么答案就是正权和-最小割
Code
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
#define inf 0x7fffffff
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
struct Edgenode{int to,cap,next;}edge[];
int head[],cnt=;
int n,m,S,T,ans;
int dis[],cur[];
void add(int u,int v,int w)
{cnt++;edge[cnt].to=v;edge[cnt].cap=w;edge[cnt].next=head[u];head[u]=cnt;}
void insert(int u,int v,int w)
{add(u,v,w);add(v,u,);}
void init()
{
n=read(),m=read();
S=;
T=n+m+;
// memset(head,0xff,sizeof(head));
for (int x,i=;i<=n;i++)
{
x=read();
insert(S,i,x);
}
for (int u,v,w,i=;i<=m;i++)
{
u=read(),v=read(),w=read();
ans+=w;
insert(u,n+i,inf);
insert(v,n+i,inf);
insert(n+i,T,w);
}
}
int q[<<];
bool bfs()
{
memset(dis,-,sizeof(dis));
q[]=S; dis[S]=;
int he=,ta=;
while (he<ta)
{
int now=q[++he];
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].cap && dis[edge[i].to]==-)
dis[edge[i].to]=dis[now]+,q[++ta]=edge[i].to;
}
return dis[T]!=-;
} int dfs(int loc,int low)
{
if(loc==T)return low;
int flow,cost=;
for(int i=cur[loc]; i; i=edge[i].next)
if (dis[edge[i].to]==dis[loc]+)
{
flow=dfs(edge[i].to,min(low-cost,edge[i].cap));
edge[i].cap-=flow; edge[i^].cap+=flow;
if(edge[i].cap) cur[loc]=i;
cost+=flow; if(cost==low)return low;
}
if(!cost) dis[loc]=-;
return cost;
} int dinic()
{
int temp=;
while (bfs())
{
for (int i=S; i<=T; i++) cur[i]=head[i];
temp+=dfs(S,inf);
}
return temp;
}
void work()
{
ans-=dinic();
printf("%d",ans);
}
int main()
{
init();
work();
return ;
}
自己本来并没要做这个题..帮旁边的YveH调A了此题...所以也顺便改了改A了一发
【BZOJ-1497】最大获利 最大流的更多相关文章
- BZOJ 1497 最大获利(最大权闭合图)
1497: [NOI2006]最大获利 Time Limit: 5 Sec Memory Limit: 64 MB Submit: 4686 Solved: 2295 [Submit][Statu ...
- bzoj 1497 最大获利 - 最小割
新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研 ...
- BZOJ 1497 最大获利(最大权闭合子图)
http://www.lydsy.com/JudgeOnline/problem.php?id=1497 思路:由题意可以得知,每个顾客都依赖2个中转站,那么让中转站连有向边到汇点,流量为它的建设费用 ...
- BZOJ 1497 最大获利
最大权闭合子图 对于这个题,可以抽象成一个图论模型,如果我们把用户与其要求建立的中转站连边,获得的利益看成正权值,付出的代价看成负权值,我们可以发现,选取一个用户的时候,就相当于选取了一个闭合子图. ...
- HDU 3879 && BZOJ 1497:Base Station && 最大获利 (最大权闭合图)
http://acm.hdu.edu.cn/showproblem.php?pid=3879 http://www.lydsy.com/JudgeOnline/problem.php?id=1497 ...
- [bzoj 1449] 球队收益(费用流)
[bzoj 1449] 球队收益(费用流) Description Input Output 一个整数表示联盟里所有球队收益之和的最小值. Sample Input 3 3 1 0 2 1 1 1 1 ...
- BZOJ 1497: [NOI2006]最大获利( 最大流 )
下午到周六早上是期末考试...但是我还是坚守在机房....要挂的节奏啊.... 这道题就是网络流 , 建图后就最大流跑啊跑啊跑... --------------------------------- ...
- BZOJ 1497 JZYZOJ 1344 [NOI2006]最大获利 网络流 最大权闭合图
http://www.lydsy.com/JudgeOnline/problem.php?id=1497 http://172.20.6.3/Problem_Show.asp?id=1344 思路 ...
- BZOJ 1497: [NOI2006]最大获利 最小割
1497: [NOI2006]最大获利 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1497 Description 新的技术正冲击着手 ...
- 【BZOJ 1497】 [NOI2006]最大获利
Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一 ...
随机推荐
- 教你如何调用百度编辑器ueditor的上传图片、上传文件等模块
出于兴趣爱好,前段时间自己尝试写了一个叫simple的cms,里面使用了百度ueditor编辑器,发现它的多图片上传模块很不错,用起来很方便,又可以选择已经上传好的图片.正好我又是个懒人,发现有现成的 ...
- mysql ERROR 1045 (28000): Access denied for user解决方法
一 这种情况下是 root@% update mysql.user set host='%' where user='root' and host='localhost'; flush privile ...
- Eclipse工作常见问题总结
一.Eclipse常见快捷键使用 自动完成单词:Alt+/ 重命名:Shift+Alt+r(统一改变字段或方法名) 生成getter/setter方法: Shift+Alt+s,然后r 删除当前行:C ...
- 制作鼠标移动到div上面显示弹出框
<div class="show-dialog hide"> <header> <div class="note"> < ...
- 教你写一个web远程控制小工具
惯例先上图 晚上躺床上了,发现忘关电脑了,又不想起来关,来用手机控制电脑多好,百度了下,果然一大把.哈,我自己为什么不自己也实现个呢,任意的自己diy.Just do it. 如果不想看如何实现,那么 ...
- js异步状态监控
说明:写这篇文章,是希望被吐槽的. 一.背景 在做报表页面的时候,页面上有很多的异步加载,而设计的loading是个全局的,一个页面就有一个. 控制loading什么时候出现,什么时候消失,要实时的知 ...
- [BZOJ 1260][CQOI2007]染色(DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1260 分析: f[i][j]表示i~j刷成s[i]~s[j]这个样子需要的最小次数 则 ...
- MVC架构设计——EF-Code First
详情参考:http://www.cnblogs.com/guomingfeng/archive/2013/05/28/mvc-ef-repository.html
- Oracle中可以nologging执行的操作
redo重做日志是Oracle数据库恢复(recovery)的基础:但在很多情况下可以通过禁用重做日志的产生来加速SQL语句的完成,也就是我们所说的可nologging化的操作,这些操作大多是或串行的 ...
- android相关技术及岗位
Android应用开发 Android底层嵌入式 Android架构师 应用开发路线javaSE-->java for Android——>eclipse使用技巧-->A ...