题目

Source

http://acm.split.hdu.edu.cn/showproblem.php?pid=5863

Description

cjj has k kinds of characters the number of which are infinite. He wants to build two strings with the characters. The lengths of the strings are both equal to n.

cjj also define a cjj_val for two string.
a[i,j] means the substring a[i],a[i+1],...,a[j-1],a[j] of string a.

cjj_val = max({ j-i+1 }) where a[i,j]=b[i,j] for every 0<=i<=j<n.

Know cjj wants to know that if he wants to build two strings with k different characters whose cjj_val is equal to m, how many ways can he do that.

Input

The first line of the input data is an integer T(1<=T<=100), means the number of test case.

Next T lines, each line contains three integers n(1<=n<=1000000000), m(1<=m<=10), k(1<=k<=26).

Output

For each test case, print one line, the number of the ways to build the string. The answer will be very large, you just need to output ans mod 1000000007.

Sample Input

2
3 2 3
3 3 3

Sample Output

108
27

分析

题目大概说用k个不同的字母,有多少种方法构造出两个长度n最长公共子串长度为m的字符串。

n的规模达到了10亿,而且又是方案数,自然就想到构造矩阵用快速幂解决。

考虑用DP解决可以这么表示状态:

  • dp[i][j]表示两个字符串前i个字符都构造好了 并且 它们后面的j个字符相同的方案数

状态的转移就是,末尾j个相同的可以转移到0个相同的也能转移到j+1个相同的(前提是j<m)。

而对于这个状态可以构造矩阵去转移,即一个(m+1)*(m+1)的矩阵,矩阵i行j列表示从末尾i个相同转移到末尾j个相同的方案数,而该矩阵的n次幂的第0行的和就是长度n的字符串末尾各个情况的方案数。
不过样表示状态最后求出来不是要求的,因为LCS小于m的也会包含于其中。那么减去小于m的方案数不就OK了!

  • 至少包含m个相同公共子串的方案数 - 至少包含m-1个相同公共子串的方案数 = 恰好包含m个相同公共子串的方案数

于是,一样再构造一个m*m的矩阵求n次幂,就OK了。

代码

#include<cstdio>
#include<cstring>
using namespace std; struct Mat{
int m[11][11];
int len;
};
Mat operator*(const Mat &m1,const Mat &m2){
Mat m={0};
m.len=m1.len;
for(int i=0; i<=m.len; ++i){
for(int j=0; j<=m.len; ++j){
for(int k=0; k<=m.len; ++k){
m.m[i][j]+=(long long)m1.m[i][k]*m2.m[k][j]%1000000007;
m.m[i][j]%=1000000007;
}
}
}
return m;
} int main(){
int t,n,m,k;
scanf("%d",&t);
while(t--){
scanf("%d%d%d",&n,&m,&k); Mat e={0},me={0};
e.len=m; me.len=m;
for(int i=0; i<=m; ++i) e.m[i][i]=1;
for(int i=0; i<=m; ++i){
if(i<m) me.m[i][i+1]=k;
me.m[i][0]=k*k-k;
}
int exp=n;
while(exp){
if(exp&1) e=e*me;
me=me*me;
exp>>=1;
}
int ans=0;
for(int i=0; i<=m; ++i){
ans+=e.m[0][i];
ans%=1000000007;
} memset(e.m,0,sizeof(e.m));
memset(me.m,0,sizeof(me.m));
e.len=m-1; me.len=m-1;
for(int i=0; i<m; ++i) e.m[i][i]=1;
for(int i=0; i<m; ++i){
if(i<m-1) me.m[i][i+1]=k;
me.m[i][0]=k*k-k;
}
exp=n;
while(exp){
if(exp&1) e=e*me;
me=me*me;
exp>>=1;
}
for(int i=0; i<m; ++i){
ans-=e.m[0][i];
ans%=1000000007;
} if(ans<0) ans+=1000000007;
printf("%d\n",ans);
}
return 0;
}

HDU5863 cjj's string game(DP + 矩阵快速幂)的更多相关文章

  1. bnuoj 34985 Elegant String DP+矩阵快速幂

    题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34985 We define a kind of strings as elegant s ...

  2. HDU 5434 Peace small elephant 状压dp+矩阵快速幂

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant  Accepts: 38  Submissions: ...

  3. 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂

    [题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...

  4. 【BZOJ】4861: [Beijing2017]魔法咒语 AC自动机+DP+矩阵快速幂

    [题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法 ...

  5. BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*

    BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻 ...

  6. Codeforces 621E Wet Shark and Block【dp + 矩阵快速幂】

    题意: 有b个blocks,每个blocks都有n个相同的0~9的数字,如果从第一个block选1,从第二个block选2,那么就构成12,问对于给定的n,b有多少种构成方案使最后模x的余数为k. 分 ...

  7. codeforces E. Okabe and El Psy Kongroo(dp+矩阵快速幂)

    题目链接:http://codeforces.com/contest/821/problem/E 题意:我们现在位于(0,0)处,目标是走到(K,0)处.每一次我们都可以从(x,y)走到(x+1,y- ...

  8. [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)

    [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A ...

  9. poj4474 Scout YYF I(概率dp+矩阵快速幂)

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4100   Accepted: 1051 Descr ...

  10. hihocoder第42周 3*N骨牌覆盖(状态dp+矩阵快速幂)

    http://hihocoder.com/contest/hiho42/problem/1 给定一个n,问我们3*n的矩阵有多少种覆盖的方法 第41周做的骨牌覆盖是2*n的,状态转移方程是dp[i] ...

随机推荐

  1. cuda 初学大全

    转自:http://blog.csdn.net/augusdi/article/details/12529331 cuda 初学大全 1 硬件架构CUDA编程中,习惯称CPU为Host,GPU为Dev ...

  2. Java返回距离当前时间段

    /** * 计算该时间离当前时间的差距 * @param time 格式为:yyyy-MM-dd HH:mm:ss * @return */ public static String getShort ...

  3. alias命令(使用命令别名)

    通过alias命令可以给一些命令定义别名,如,将长的难记住的命令起一个容易记住的别名,提高工作效率 alias -p 查看已有的别名列表 命名别名格式: alias 新命令名='原命令名 -参数/选项 ...

  4. nyoj744(位运算)

    题目:http://acm.nyist.net/JudgeOnline/problem.php?pid=744 思路:a^b可以得到a~b间任意两个数异或运算的长度的最大值,设为n,答案为:pow(2 ...

  5. UVA 10252

    按照字典序输出最长公共子序列 #include<time.h> #include <cstdio> #include <iostream> #include< ...

  6. MVC - 10.CodeFrist

    微软示例 1.(对新数据库使用 Code First):http://msdn.microsoft.com/zh-cn/data/jj193542 2.(连接和模型):http://msdn.micr ...

  7. MangoDB的C#Driver驱动简单例子

    以下是本人学习C#Driver驱动简单的学习例子.GridFS的增删查操作 和 表的增删查改操作. public class MongoServerHelper { public static str ...

  8. eclipse中的任务标记(TODO、FIXME、XXX)

    eclipse Task Tags: TODO -用来提醒该标识处的代码有待返回继续编写.更新或者添加.该标签通常在注释块的源文件顶部. FIXME -该标签用来提醒你代码中存在稍后某个时间需要修改的 ...

  9. eclipse使用tips-Toggle Mark Occurrences 颜色更改

    Toggle Mark Occurrences这个功能非常好用,能把选中的方法/变量在本类中全部出现的地方高亮显示,是一个非常实用的功能.但是默认颜色是灰色,非常毁眼.可以通过下面的设置更改为自己喜欢 ...

  10. 在ubuntu上搭建开发环境4---ubuntu简单的搭建LAMP环境和配置

    最近重新安装了Ubuntu,但是之前的LAMP环境自然也就没有了,实在是不想再去编译搭建LAMP环境(这种方法实在是太费时间,而且太容易遇到各种不知道为什么的错误),所以,就去查查有没有什么简单的搭建 ...