Air Raid
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4974 Accepted Submission(s): 3347

Problem Description
Consider a town where all the streets are one-way and each street leads from one intersection to another. It is also known that starting from an intersection and walking through town's streets you can never reach the same intersection i.e. the town's streets form no cycles.

With these assumptions your task is to write a program that finds the minimum number of paratroopers that can descend on the town and visit all the intersections of this town in such a way that more than one paratrooper visits no intersection. Each paratrooper lands at an intersection and can visit other intersections following the town streets. There are no restrictions about the starting intersection for each paratrooper.

Input
Your program should read sets of data. The first line of the input file contains the number of the data sets. Each data set specifies the structure of a town and has the format:

no_of_intersections
no_of_streets
S1 E1
S2 E2
......
Sno_of_streets Eno_of_streets

The first line of each data set contains a positive integer no_of_intersections (greater than 0 and less or equal to 120), which is the number of intersections in the town. The second line contains a positive integer no_of_streets, which is the number of streets in the town. The next no_of_streets lines, one for each street in the town, are randomly ordered and represent the town's streets. The line corresponding to street k (k <= no_of_streets) consists of two positive integers, separated by one blank: Sk (1 <= Sk <= no_of_intersections) - the number of the intersection that is the start of the street, and Ek (1 <= Ek <= no_of_intersections) - the number of the intersection that is the end of the street. Intersections are represented by integers from 1 to no_of_intersections.

There are no blank lines between consecutive sets of data. Input data are correct.

Output
The result of the program is on standard output. For each input data set the program prints on a single line, starting from the beginning of the line, one integer: the minimum number of paratroopers required to visit all the intersections in the town.

Sample Input
2
4
3
3 4
1 3
2 3
3
3
1 3
1 2
2 3

Sample Output
2
1

最小路径覆盖=点数-最大匹配

最大匹配可以用匈牙利算法来算,也能用最大流来算。

#include <stdio.h>
#include <string.h>
// ALGORITHM_MAXFLOW_SAP -> #define ALGORITHM_MAXFLOW_SAP_MAXN 20010
#define ALGORITHM_MAXFLOW_SAP_MAXM 880010
#define ALGORITHM_MAXFLOW_SAP_INF 0x7FFFFFFF struct ALGORITHM_MAXFLOW_SAP_Node {
int from, to, next;
int cap;
} ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_MAXM];
int ALGORITHM_MAXFLOW_SAP_tol;
int ALGORITHM_MAXFLOW_SAP_head[ALGORITHM_MAXFLOW_SAP_MAXN];
int ALGORITHM_MAXFLOW_SAP_dep[ALGORITHM_MAXFLOW_SAP_MAXN];
int ALGORITHM_MAXFLOW_SAP_gap[ALGORITHM_MAXFLOW_SAP_MAXN];
int ALGORITHM_MAXFLOW_SAP_cur[ALGORITHM_MAXFLOW_SAP_MAXN];
int ALGORITHM_MAXFLOW_SAP_S[ALGORITHM_MAXFLOW_SAP_MAXN];
int ALGORITHM_MAXFLOW_SAP_que[ALGORITHM_MAXFLOW_SAP_MAXN];
int ALGORITHM_MAXFLOW_SAP_n; void ALGORITHM_MAXFLOW_SAP_clear() {
ALGORITHM_MAXFLOW_SAP_tol = ;
memset(ALGORITHM_MAXFLOW_SAP_head, -, sizeof(ALGORITHM_MAXFLOW_SAP_head));
} void ALGORITHM_MAXFLOW_SAP_addedge(int u, int v, int w) {
ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].from = u;
ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].to = v;
ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].cap = w;
ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].next = ALGORITHM_MAXFLOW_SAP_head[u];
ALGORITHM_MAXFLOW_SAP_head[u] = ALGORITHM_MAXFLOW_SAP_tol++;
ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].from = v;
ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].to = u;
ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].cap = ;
ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_tol].next = ALGORITHM_MAXFLOW_SAP_head[v];
ALGORITHM_MAXFLOW_SAP_head[v] = ALGORITHM_MAXFLOW_SAP_tol++;
}
void ALGORITHM_MAXFLOW_SAP_BFS(int start, int end) {
memset(ALGORITHM_MAXFLOW_SAP_dep, -, sizeof(ALGORITHM_MAXFLOW_SAP_dep));
memset(ALGORITHM_MAXFLOW_SAP_gap, , sizeof(ALGORITHM_MAXFLOW_SAP_gap));
ALGORITHM_MAXFLOW_SAP_gap[] = ;
int front, rear;
front = rear = ;
ALGORITHM_MAXFLOW_SAP_dep[end] = ;
ALGORITHM_MAXFLOW_SAP_que[rear++] = end;
while(front != rear) {
int u = ALGORITHM_MAXFLOW_SAP_que[front++];
if(front == ALGORITHM_MAXFLOW_SAP_MAXN) {
front = ;
}
for(int i = ALGORITHM_MAXFLOW_SAP_head[u]; i != -; i = ALGORITHM_MAXFLOW_SAP_edge[i].next) {
int v = ALGORITHM_MAXFLOW_SAP_edge[i].to;
if(ALGORITHM_MAXFLOW_SAP_dep[v] != -) {
continue;
}
ALGORITHM_MAXFLOW_SAP_que[rear++] = v;
if(rear == ALGORITHM_MAXFLOW_SAP_MAXN) {
rear = ;
}
ALGORITHM_MAXFLOW_SAP_dep[v] = ALGORITHM_MAXFLOW_SAP_dep[u] + ;
++ALGORITHM_MAXFLOW_SAP_gap[ALGORITHM_MAXFLOW_SAP_dep[v]];
}
}
}
int ALGORITHM_MAXFLOW_SAP_SAP(int start, int end) {
int res = ;
ALGORITHM_MAXFLOW_SAP_BFS(start, end);
int top = ;
memcpy(ALGORITHM_MAXFLOW_SAP_cur, ALGORITHM_MAXFLOW_SAP_head, sizeof(ALGORITHM_MAXFLOW_SAP_head));
int u = start;
int i;
while(ALGORITHM_MAXFLOW_SAP_dep[start] < ALGORITHM_MAXFLOW_SAP_n) {
if(u == end) {
int temp = ALGORITHM_MAXFLOW_SAP_INF;
int inser;
for(i = ; i < top; i++)
if(temp > ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_S[i]].cap) {
temp = ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_S[i]].cap;
inser = i;
}
for(i = ; i < top; i++) {
ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_S[i]].cap -= temp;
ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_S[i] ^ ].cap += temp;
}
res += temp;
top = inser;
u = ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_S[top]].from;
}
if(u != end && ALGORITHM_MAXFLOW_SAP_gap[ALGORITHM_MAXFLOW_SAP_dep[u] - ] == ) {
break;
}
for(i = ALGORITHM_MAXFLOW_SAP_cur[u]; i != -; i = ALGORITHM_MAXFLOW_SAP_edge[i].next)
if(ALGORITHM_MAXFLOW_SAP_edge[i].cap != && ALGORITHM_MAXFLOW_SAP_dep[u] == ALGORITHM_MAXFLOW_SAP_dep[ALGORITHM_MAXFLOW_SAP_edge[i].to] + ) {
break;
}
if(i != -) {
ALGORITHM_MAXFLOW_SAP_cur[u] = i;
ALGORITHM_MAXFLOW_SAP_S[top++] = i;
u = ALGORITHM_MAXFLOW_SAP_edge[i].to;
} else {
int min = ALGORITHM_MAXFLOW_SAP_n;
for(i = ALGORITHM_MAXFLOW_SAP_head[u]; i != -; i = ALGORITHM_MAXFLOW_SAP_edge[i].next) {
if(ALGORITHM_MAXFLOW_SAP_edge[i].cap == ) {
continue;
}
if(min > ALGORITHM_MAXFLOW_SAP_dep[ALGORITHM_MAXFLOW_SAP_edge[i].to]) {
min = ALGORITHM_MAXFLOW_SAP_dep[ALGORITHM_MAXFLOW_SAP_edge[i].to];
ALGORITHM_MAXFLOW_SAP_cur[u] = i;
}
}
--ALGORITHM_MAXFLOW_SAP_gap[ALGORITHM_MAXFLOW_SAP_dep[u]];
ALGORITHM_MAXFLOW_SAP_dep[u] = min + ;
++ALGORITHM_MAXFLOW_SAP_gap[ALGORITHM_MAXFLOW_SAP_dep[u]];
if(u != start) {
u = ALGORITHM_MAXFLOW_SAP_edge[ALGORITHM_MAXFLOW_SAP_S[--top]].from;
}
}
}
return res;
} // <- ALGORITHM_MAXFLOW_SAP
int main() {
int T;
scanf("%d", &T);
while(T--) {
ALGORITHM_MAXFLOW_SAP_clear();
int n, m, a, b;
scanf("%d%d", &n, &m);
ALGORITHM_MAXFLOW_SAP_n = + * n;
for(int i = ; i <= n + ; i++) {
ALGORITHM_MAXFLOW_SAP_addedge(, i, );;
}
for(int i = n + ; i <= * n + ; i++) {
ALGORITHM_MAXFLOW_SAP_addedge(i, * n + , );
}
for(int i = ; i < m; i++) {
scanf("%d%d", &a, &b);
ALGORITHM_MAXFLOW_SAP_addedge(a + , b + n + , );
}
int x = ALGORITHM_MAXFLOW_SAP_SAP(, * n + );
printf("%d\n", n - x);
}
return ;
}

Air Raid[HDU1151]的更多相关文章

  1. HDU1151 Air Raid —— 最小路径覆盖

    题目链接:https://vjudge.net/problem/HDU-1151 Air Raid Time Limit: 2000/1000 MS (Java/Others)    Memory L ...

  2. hdu1151 二分图(无回路有向图)的最小路径覆盖 Air Raid

    欢迎参加——BestCoder周年纪念赛(高质量题目+多重奖励) Air Raid Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65 ...

  3. Hdu1151 Air Raid(最小覆盖路径)

    Air Raid Problem Description Consider a town where all the streets are one-way and each street leads ...

  4. HDU1151:Air Raid(最小边覆盖)

    Air Raid Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  5. 【网络流24题----03】Air Raid最小路径覆盖

    Air Raid Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  6. hdu-----(1151)Air Raid(最小覆盖路径)

    Air Raid Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  7. hdu 1151 Air Raid(二分图最小路径覆盖)

    http://acm.hdu.edu.cn/showproblem.php?pid=1151 Air Raid Time Limit: 1000MS   Memory Limit: 10000K To ...

  8. HDOJ 1151 Air Raid

    最小点覆盖 Air Raid Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

  9. Air Raid(最小路径覆盖)

    Air Raid Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7511   Accepted: 4471 Descript ...

随机推荐

  1. ajaxFileUpload上传文件没反应

    调用jquery的ajaxFileUpload异步上传文件,IE浏览器不进入success问题 原因:json转换异常,ie浏览器处理后的返回json没有<pre>标签,直接是完整的jso ...

  2. Apache commons-dbutils笔记

  3. Jquery.Datatables dom表格定位

    Datatables会添加一些控制元素在表格的周围,比如默认状态下改变每页显示条数(l)的空间在左上角,即使搜索框(f)在右上角,表格的信息(i)显示在左下角,分页控件(p)显示在右下角. 这些控件在 ...

  4. 第一部分:使用iReport制作报表的详细过程(Windows环境下)

    提示:在有些板块,文中的图片看不到,建议到我的blog浏览文章:http://blog.csdn.net/jemlee2002/文章将会涉及3个方面的内容: 第一部分:使用iReport制作报表的详细 ...

  5. Web API 使用上安全吗?

    Web API入门指南有些朋友回复问了些安全方面的问题,安全方面可以写的东西实在太多了,这里尽量围绕着Web API的安全性来展开,介绍一些安全的基本概念,常见安全隐患.相关的防御技巧以及Web AP ...

  6. Oracle数据库 控制文件

    一.概念控制文件的主要任务是管理数据库的状态以及描述数据库的物理结构 二.所含有的信息1.数据库名2.数据库标识符(DBID)3.数据库创建时间戳4.数据库字符集5.数据文件信息6.临时文件信息7.在 ...

  7. 6-01T-SQL中的运算符

    算术运算符:+.-.*./.%. 赋值运算符:= 逻辑运算符:AND.OR.NOT. 比较运算符:>,<,<=,>=,<>.=,!=. 连接运算符:"+& ...

  8. C++ find 函数用法

    头文件 #include <algorithm> 函数实现 template<class InputIterator, class T> InputIterator find ...

  9. Waiting Processed Cancelable ShowDialog (Release 2)

    namespace Test { using System; using System.Windows.Forms; static class Program { /// <summary> ...

  10. visio 交叉线 不出现拱形怎么办?