E. Minimum spanning tree for each edge
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Connected undirected weighted graph without self-loops and multiple edges is given. Graph contains n vertices and m edges.

For each edge (u, v) find the minimal possible weight of the spanning tree that contains the edge (u, v).

The weight of the spanning tree is the sum of weights of all edges included in spanning tree.

Input

First line contains two integers n and m (1 ≤ n ≤ 2·105, n - 1 ≤ m ≤ 2·105) — the number of vertices and edges in graph.

Each of the next m lines contains three integers ui, vi, wi (1 ≤ ui, vi ≤ n, ui ≠ vi, 1 ≤ wi ≤ 109) — the endpoints of the i-th edge and its weight.

Output

Print m lines. i-th line should contain the minimal possible weight of the spanning tree that contains i-th edge.

The edges are numbered from 1 to m in order of their appearing in input.

Sample test(s)
input
5 7
1 2 3
1 3 1
1 4 5
2 3 2
2 5 3
3 4 2
4 5 4
output
9
8
11
8
8
8
9

题意:给出一个图,问每一条边如果要在一个生成树当中,那这个生成树最小是多少。

分析:先找出一个最小生成树。

想像一下,加入一条边,会对这个生成树造成什么影响。

形成了一个环,然后最优情况,肯定要拿掉除他之外最大的一条边。

问题就变成了,在最小生成树上查询两点之间的边的最大值。

 /**
Create By yzx - stupidboy
*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <ctime>
#include <iomanip>
using namespace std;
typedef long long LL;
typedef double DB;
#define MIT (2147483647)
#define INF (1000000001)
#define MLL (1000000000000000001LL)
#define sz(x) ((int) (x).size())
#define clr(x, y) memset(x, y, sizeof(x))
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
#define mk make_pair inline int Getint()
{
int Ret = ;
char Ch = ' ';
bool Flag = ;
while(!(Ch >= '' && Ch <= ''))
{
if(Ch == '-') Flag ^= ;
Ch = getchar();
}
while(Ch >= '' && Ch <= '')
{
Ret = Ret * + Ch - '';
Ch = getchar();
}
return Flag ? -Ret : Ret;
} const int N = , M = ;
int n, m;
struct EdgeType
{
int u, v, value, index;
LL ans;
inline bool operator <(const EdgeType &t) const
{
return value < t.value;
} inline void Read()
{
u = Getint();
v = Getint();
value = Getint();
}
} edge[N];
int fa[N], favalue[N];
int first[N], to[N * ], value[N * ], next[N * ], tot;
int up[N][M], depth[N], maxcnt[N][M];
LL ans; inline void Input()
{
n = Getint();
m = Getint();
for(int i = ; i <= m; i++)
{
edge[i].Read();
edge[i].index = i;
}
} inline int Find(int x)
{
static int path[N], len;
for(len = ; x != fa[x]; x = fa[x])
path[++len] = x;
for(int i = ; i <= len; i++) fa[path[i]] = x;
return x;
} inline void Insert(int u, int v, int val)
{
tot++;
to[tot] = v, value[tot] = val, next[tot] = first[u];
first[u] = tot;
} inline void Bfs()
{
static int que[N], head, tail;
for(int i = ; i <= n; i++) fa[i] = -;
que[] = , head = tail = , fa[] = , depth[] = ;
while(head <= tail)
{
int u = que[head++];
for(int tab = first[u], v; tab; tab = next[tab])
if(fa[v = to[tab]] == -)
{
fa[v] = u, favalue[v] = value[tab], depth[v] = depth[u] + ;
que[++tail] = v;
}
}
} inline int GetMax(int u, int v)
{
int ret = , level = M;
while(depth[u] != depth[v])
{
if(depth[u] < depth[v]) swap(u, v);
while(level && ( << level) > depth[u] - depth[v]) level--;
ret = max(ret, maxcnt[u][level]);
u = up[u][level];
}
level = M;
while(level && u != v)
{
while(level && ( << level) > depth[u]) level--;
while(level && up[u][level] == up[v][level]) level--;
ret = max(ret, maxcnt[u][level]);
ret = max(ret, maxcnt[v][level]);
u = up[u][level], v = up[v][level];
}
while(u != v)
{
ret = max(ret, favalue[u]);
ret = max(ret, favalue[v]);
u = fa[u], v = fa[v];
}
return ret;
} inline bool CompareByIndex(const EdgeType &a, const EdgeType &b)
{
return a.index < b.index;
} inline void Solve()
{
sort(edge + , edge + + m);
for(int i = ; i <= n; i++) fa[i] = i;
for(int i = ; i <= m; i++)
{
int u = Find(edge[i].u), v = Find(edge[i].v);
if(u != v)
{
Insert(edge[i].u, edge[i].v, edge[i].value);
Insert(edge[i].v, edge[i].u, edge[i].value);
ans += edge[i].value;
fa[u] = v;
}
} Bfs(); for(int i = ; i < M; i++)
{
if(( << i) > n) break;
for(int j = ; j <= n; j++)
if(i == )
{
up[j][i] = fa[j];
maxcnt[j][i] = favalue[j];
}
else
{
up[j][i] = up[up[j][i - ]][i - ];
maxcnt[j][i] = max(maxcnt[j][i - ], maxcnt[up[j][i - ]][i - ]);
}
} for(int i = ; i <= m; i++)
{
int u = edge[i].u, v = edge[i].v;
int ret = GetMax(u, v);
edge[i].ans = ans - ret + edge[i].value;
} sort(edge + , edge + + m, CompareByIndex);
for(int i = ; i <= m; i++) printf("%I64d\n", edge[i].ans);
} int main()
{
freopen("a.in", "r", stdin);
Input();
Solve();
return ;
}

CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge的更多相关文章

  1. CF Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树变种

    题目链接:http://codeforces.com/problemset/problem/609/E 大致就是有一棵树,对于每一条边,询问包含这条边,最小的一个生成树的权值. 做法就是先求一次最小生 ...

  2. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  3. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  4. Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST

    E. Minimum spanning tree for each edge   Connected undirected weighted graph without self-loops and ...

  5. Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  6. Educational Codeforces Round 3 E. Minimum spanning tree for each edge (最小生成树+树链剖分)

    题目链接:http://codeforces.com/contest/609/problem/E 给你n个点,m条边. 问枚举每条边,问你加这条边的前提下组成生成树的权值最小的树的权值和是多少. 先求 ...

  7. [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]

    这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...

  8. codeforces 609E Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  9. Codeforces Edu3 E. Minimum spanning tree for each edge

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

随机推荐

  1. Good Bye 2015B(模拟或者二进制枚举)

    B. New Year and Old Property time limit per test 2 seconds memory limit per test 256 megabytes input ...

  2. springmvc注解配置

    <?xml version="1.0" encoding="UTF-8" ?> <beans xmlns="http://www.s ...

  3. iOS 判断第一个字符是数字还是汉字

       NSString *titleStr = @"琳小兮";  //先截取字符串,拿到第一个字符         NSString *firstStr = [titleStr s ...

  4. Linq to json

    Json.Net系列教程 4.Linq To JSON 一.Linq to JSON是用来干什么的? Linq to JSON是用来操作JSON对象的.可以用于快速查询,修改和创建JSON对象.当JS ...

  5. cordova+angularJS+ionic

    1.创建项目 2.路由 angular.module("starter",['ionic']) // 依赖 ionic 提供的ui-router .config(function ...

  6. jquery获取、改变元素属性值

    //标签的属性称作元素属性,在JS里对应的DOM对象的对应属性叫DOM属性.JS里的DOM属性名有时和原元素属性名不同. //==================================操作元 ...

  7. PHPCMS 多站点管理切换问题

    打开系统函数库global.func.php 可以看到获取站点ID的函数如下 /** * 获取当前的站点ID */ function get_siteid() { static $siteid; if ...

  8. hdu 4739 2013杭州赛区网络赛 寻找平行坐标轴的四边形 **

    是平行坐标轴的,排个序搞一下就行了,卧槽,水的不行 如果不是平行的,则需要按照边长来判断

  9. Linux下常用命令

    1.判断桌面环境是Gnome还是KDE #update-alternatives --display x-session-manager

  10. 顺序表C语言版

    #include <stdio.h> /* * 顺序表最多输入N个数 */ #define N 10 #define OK 1 #define ERROR -1 struct sequeu ...