A. Graph Coloring

答案为$1$很好判,为$2$只需要二分图染色,对于$3$,首先爆搜哪些边要染成第$3$种颜色,然后二分图染色判定即可。

B. Decimal Fraction

枚举前缀,那么只需要求出后面部分的最小循环节即可,将串翻转之后进行KMP,循环节长度$=i-next[i]$。

时间复杂度$O(n)$。

C. Teams of Equal Power

首先将球员按能力值从大到小排序,假设一队的队长能力值比二队队长高,那么显然一队队长只能是第一个人,枚举二队队长,然后看看后面是否存在合法方案即可。

判断合法,可以设$f[i][j]$表示用$[i,n]$这些人能否组成能力值之和为$j$的队伍,可以用bitset加速。

时间复杂度$O(\frac{n^3}{64})$。

D. Hexagon

轮廓线DP,设$f[i][j][S]$表示考虑到$(i,j)$这个三角形,轮廓线上的匹配情况为$S$的方案数,然后打表即可,注意去掉冗余的状态。

E. Maximal Matching

建图:$S$向左边每个点连边,费用为点权,流量为$1$;右边每个点向$T$连边,费用为点权,流量为$1$;左边的点向能匹配的右边的点连边,费用为$0$,流量为$1$,那么答案就是这个图的最大费用流。

注意到与$S$和$T$相连的边费用非负,且中间的边费用都是$0$,第一次增广后,左右那两条边费用取负,中间的$0$权边反向,因为左右两条边与源汇连接,所以以后最长增广路必然不会经过它,可以删除。而对于中间的$0$权边来说,将它们按强连通分量合并后增广路不变,所以可以如此缩成DAG,就可以每次在$O(n+m+e)$的时间内找到增广路。

时间复杂度$O(e(n+m+e))$。

然后不想写,写个裸费用流居然A了。

F. Right Turn Only

按题目要求分类讨论即可。

G. Similar Strings

$O(2^k)$枚举串中哪些位置必须匹配,算出Hash值,相同的Hash值的串之间可以互相更新答案。

时间复杂度$O(2^kn\log n)$。

H. Traffic Lights

留坑。

I. Triple Connections

区间DP,细节很多,留坑。

XIII Open Cup named after E.V. Pankratiev. GP of SPb的更多相关文章

  1. XIII Open Cup named after E.V. Pankratiev. GP of Ukraine

    A. Automaton 后缀自动机可以得到$O(2n+1)$个状态,但是后缀自动机会拒绝接收所有不是$S$的子串的串,所以在建立后缀自动机的时候不复制节点即可得到$n+1$个状态的DFA. #inc ...

  2. XIII Open Cup named after E.V. Pankratiev. GP of Asia and South Caucasus

    A. RPG 首先计算出每个技能对于每个属性值的可行区间,若区间为空则不合法. 枚举两个技能,以及每个属性值,根据区间的关系可以得到哪个必须要在另一个之前学,连边看看是否有环即可. 时间复杂度$O(n ...

  3. XIII Open Cup named after E.V. Pankratiev. GP of Azov Sea

    A. Freestyle 如果逆序对为$0$,那么先手必败. 因为每次只能翻转长度为$4k+2$和$4k+3$的区间,所以每次操作之后逆序对的奇偶性一定会发生改变. 因此如果逆序对个数为偶数,则先手必 ...

  4. XIII Open Cup named after E.V. Pankratiev. GP of America

    A. Explosions 注意到将炸弹按坐标排序后,每个炸弹直接引爆和间接引爆的都是连续的一段区间,因此只需要求出每个炸弹能间接炸到的最左和最右的炸弹即可. 建立图论模型,炸弹$i$向炸弹$j$连单 ...

  5. XIII Open Cup named after E.V. Pankratiev. GP of Saratov

    A. Box Game 注意到局面总数不超过$50000$,而且每次操作都会改变石子的奇偶性,因此按奇偶可以将状态建成二分图,然后求出最大匹配. 如果状态数是偶数,那么先手必胜,策略就是每次走匹配边, ...

  6. XVII Open Cup named after E.V. Pankratiev. GP of SPb

    A. Array Factory 将下标按前缀和排序,然后双指针,维护最大的右边界即可. #include<cstdio> #include<algorithm> using ...

  7. XVI Open Cup named after E.V. Pankratiev. GP of SPB

    A. Bubbles 枚举两个点,求出垂直平分线与$x$轴的交点,答案=交点数+1. 时间复杂度$O(n^2\log n)$. #include<cstdio> #include<a ...

  8. XIV Open Cup named after E.V. Pankratiev. GP of SPb

    A. Bracket Expression 直接按题意模拟即可. 时间复杂度$O(n)$. #include<stdio.h> #include<algorithm> #inc ...

  9. XVIII Open Cup named after E.V. Pankratiev. GP of SPb

    contest Link A. Base i − 1 Notation solved by sdcgvhgj 238 求出a+b的2进制后从低位到高两位两位地转化为i-1进制 i-1进制的第2k位和第 ...

随机推荐

  1. NYOJ题目1080年龄排序

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAtMAAAJVCAIAAACTf+6jAAAgAElEQVR4nO3dO1Lj3NbG8W8Szj0QYg ...

  2. NYOJ题目10505C?5S?

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAscAAAJ/CAIAAAAbDelhAAAgAElEQVR4nO3dPXLbOhfG8XcT7r0Q11

  3. php连接sql server

    这两天有个php连接sql server的项目,顺便学习学习sql server  说明: 1:PHP5.2.x本身有个php_mssql.dll的扩展用来连接Sql server,但是这个dll只是 ...

  4. NSDatePicker && NSDate

    UIDatePicker *datePicker = [[UIDatePicker alloc]init]; datePicker.datePickerMode = UIDatePickerModeD ...

  5. saltapi中expr_form参数的使用

    以前,一直用compound参数, 现在,想要并行执行salt命令,那list就派上用场了. 同时传多个主机列表,用逗号分隔,然后,用list参数传,就好. [root@c1773 deployop] ...

  6. poj 3984:迷宫问题(广搜,入门题)

    迷宫问题 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7635   Accepted: 4474 Description ...

  7. 使用getopt函数对windows命令行程序进行参数解析

    getopt()是libc的标准函数,很多语言中都能找到它的移植版本. // -b -p "c:\input" -o "e:\test\output" bool ...

  8. [LeetCode] Search Insert Position

    Given a sorted array and a target value, return the index if the target is found. If not, return the ...

  9. Microsoft SQL Server 博客目录

    基础概念篇 SQL Server排序规则 SQL SERVER 统计信息概述(Statistics) SQL SERVER 索引之聚集索引和非聚集索引的描述 Sql Server 索引之唯一索引和筛选 ...

  10. Windows Phone中获取UserAgent

    进入WP8时代后,通过DeviceExtendedProperties获取到的DeviceName不再是手机型号了,这对于需要获得手机型号做一些事情的应用(如新浪微博的小尾巴)来说,影响是比较大的. ...