http://blog.csdn.net/w5310335/article/details/48972587

使用GBDT选取特征

2015-03-31

本文介绍如何使用scikit-learn的GBDT工具进行特征选取。

为什麽选取特征


有些特征意义不大,删除后不影响效果,甚至可能提升效果。

关于GBDT(Gradient Boosting Decision Tree)


可以参考:

GBDT(MART)概念简介

GBDT(MART) 迭代决策树入门教程 | 简介

机器学习中的算法(1)-决策树模型组合之随机森林与GBDT

如何在numpy数组中选取若干列或者行?


>>> import numpy as np
>>> tmp_a = np.array([[1,1], [0.4, 4], [1., 0.9]])
>>> tmp_a
array([[ 1. , 1. ],
[ 0.4, 4. ],
[ 1. , 0.9]])
>>> tmp_a[[0,1],:] # 选第0、1行
array([[ 1. , 1. ],
[ 0.4, 4. ]])
>>> tmp_a[np.array([True, False, True]), :] # 选第0、2行
array([[ 1. , 1. ],
[ 1. , 0.9]])
>>> tmp_a[:,[0]] # 选第0列
array([[ 1. ],
[ 0.4],
[ 1. ]])
>>> tmp_a[:, np.array([True, False])] # 选第0列
array([[ 1. ],
[ 0.4],
[ 1. ]])

生成数据集


参考基于贝叶斯的文本分类实战。部分方法在原始数据集的预测效果也在基于贝叶斯的文本分类实战这篇文章里。

训练GBDT


>>> from sklearn.ensemble import GradientBoostingClassifier
>>> gbdt = GradientBoostingClassifier()
>>> gbdt.fit(training_data, training_labels) # 训练。喝杯咖啡吧
GradientBoostingClassifier(init=None, learning_rate=0.1, loss='deviance',
max_depth=3, max_features=None, max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=100,
random_state=None, subsample=1.0, verbose=0,
warm_start=False)
>>> gbdt.feature_importances_ # 据此选取重要的特征
array([ 2.08644807e-06, 0.00000000e+00, 8.93452010e-04, ...,
5.12199658e-04, 0.00000000e+00, 0.00000000e+00])
>>> gbdt.feature_importances_.shape
(19630,)

看一下GBDT的分类效果:

>>> gbdt_predict_labels = gbdt.predict(test_data)
>>> sum(gbdt_predict_labels==test_labels) # 比 多项式贝叶斯 差许多
414

新的训练集和测试集(只保留了1636个特征,原先是19630个特征):

>>> new_train_data = training_data[:, feature_importances>0]
>>> new_train_data.shape # 只保留了1636个特征
(1998, 1636)
>>> new_test_data = test_data[:, feature_importances>0]
>>> new_test_data.shape
(509, 1636)

使用多项式贝叶斯处理新数据


>>> from sklearn.naive_bayes import MultinomialNB
>>> bayes = MultinomialNB()
>>> bayes.fit(new_train_data, training_labels)
MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)
>>> bayes_predict_labels = bayes.predict(new_test_data)
>>> sum(bayes_predict_labels == test_labels) # 之前预测正确的样本数量是454
445

使用伯努利贝叶斯处理新数据


>>> from sklearn.naive_bayes import BernoulliNB
>>> bayes2 = BernoulliNB()
>>> bayes2.fit(new_train_data, training_labels)
BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True)
>>> bayes_predict_labels = bayes2.predict(new_test_data)
>>> sum(bayes_predict_labels == test_labels) # 之前预测正确的样本数量是387
422

使用Logistic回归处理新数据


对原始特征组成的数据集:

>>> from sklearn.linear_model import LogisticRegression
>>> lr1 = LogisticRegression()
>>> lr1.fit(training_data, training_labels)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr',
penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
verbose=0)
>>> lr1_predict_labels = lr1.predict(test_data)
>>> sum(lr1_predict_labels == test_labels)
446

对削减后的特征组成的数据集:

>>> lr2 = LogisticRegression()
>>> lr2.fit(new_train_data, training_labels)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, max_iter=100, multi_class='ovr',
penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
verbose=0)
>>> lr2_predict_labels = lr2.predict(new_test_data)
>>> sum(lr2_predict_labels == test_labels) # 正确率略微提升
449

(完)

scikit-learn的GBDT工具进行特征选取。的更多相关文章

  1. 转 :scikit-learn的GBDT工具进行特征选取。

    http://blog.csdn.net/w5310335/article/details/48972587 使用GBDT选取特征 2015-03-31 本文介绍如何使用scikit-learn的GB ...

  2. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  3. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  4. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  5. 特征选取1-from sklearn.feature_selection import SelectKBest

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  6. Scikit Learn

    Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.

  7. [模式识别].(希腊)西奥多里蒂斯<第四版>笔记5之__特征选取

    1,引言 有关模式识别的一个主要问题是维数灾难.我们将在第7章看到维数非常easy变得非常大. 减少维数的必要性有几方面的原因.计算复杂度是一个方面.还有一个有关分类器的泛化性能. 因此,本章的主要任 ...

  8. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  9. 吴裕雄 python 机器学习——数据预处理过滤式特征选取SelectPercentile模型

    from sklearn.feature_selection import SelectPercentile,f_classif #数据预处理过滤式特征选取SelectPercentile模型 def ...

随机推荐

  1. 一个页面从输入 URL 到页面加载显示完成,这个过程中都发生了什么?

    分为4个步骤: 1)  当发送一个 URL 请求时,不管这个 URL 是 Web 页面的 URL 还是 Web 页面上每个资源的 URL,浏览器都会开启一个线程来处理这个请求,同时在远程 DNS 服务 ...

  2. QThreadPool线程池的开发使用

    QThreadPool+QRunnable线程池与QThread线程两种方式使用的场景不同,QThreadPool+QRunnable线程池主要用于那种不需要一直运行的任务,而QThread主要用于长 ...

  3. 使用清华源和阿里源替代Ubuntu源

    sudo nano /etc/apt/source.list 替换为如下文本 # 默认注释了源码镜像以提高 apt update 速度,如有需要可自行取消注释 deb https://mirrors. ...

  4. Calculate CRC32 as in STM32 hardware (EWARM v.5.50 and later)

    http://supp.iar.com/Support/?note=64424&from=note+11927 BackgroundThe STM32 devices from ST Micr ...

  5. 调试工具BTrace 的使用--例子

    http://www.cnblogs.com/serendipity/archive/2012/05/14/2499840.html

  6. 线程池框架executor

    Eexecutor作为灵活且强大的异步执行框架,其支持多种不同类型的任务执行策略,提供了一种标准的方法将任务的提交过程和执行过程解耦开发,基于生产者-消费者模式,其提交任务的线程相当于生产者,执行任务 ...

  7. Java ArrayList、string、string[]之间的转换

    1.ArrarList 转换为 string[] : ArrayList list = new ArrayList(); list.Add("aaa"); list.Add(&qu ...

  8. IntelliJ IDEA2018.1、2017.3激活

    IntelliJ IDEA2018.1.2017.3破解教程 http://idea.java.sx/ 简单快捷!! ————————————————————————————————————————  ...

  9. docker logs-查看docker容器日志

    只限制最后100条的日志,并持续更新日志显示 docker logs -f --tail= CONTAINER_ID docker logs -f --tail CONTAINER_ID   http ...

  10. 利用js实现 禁用浏览器后退 浏览器返回

    现在很多的内部系统,一些界面,都是用户手动点击退出按钮的.但是为了避免,用户误操作 点击浏览器后退,或者用鼠标手势后退什么的.容易出现误操作.        所以在有些页面上,适当的禁用浏览器的后退, ...