xiaoxin juju needs help

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1159    Accepted Submission(s): 335

Problem Description
As we all known, xiaoxin is a brilliant coder. He knew **palindromic** strings when he was only a six grade student at elementry school.

This summer he was working at Tencent as an intern. One day his leader came to ask xiaoxin for help. His leader gave him a string and he wanted xiaoxin to generate palindromic strings for him. Once xiaoxin generates a different palindromic string, his leader will give him a watermelon candy. The problem is how many candies xiaoxin's leader needs to buy?

 
Input
This problem has multi test cases. First line contains a single integer T(T≤20) which represents the number of test cases.
For each test case, there is a single line containing a string S(1≤length(S)≤1,000).
 
Output
For each test case, print an integer which is the number of watermelon candies xiaoxin's leader needs to buy after mod 1,000,000,007.
 
Sample Input
3
aa
aabb
a
 
Sample Output
1
2
1
 
Source
题意:给你一个字符串,判断有多少种方式使得这个字符串回文;
思路:先判断0的情况,其次标记26个字母,ans=c(len/2,a/2)*c(len-a/2,b/2)*c(len/2-a/2-b/2,c/2)......;
     因为在求组合数需要取模,所以需要利用逆元的方式求解;
     逆元详解:http://blog.csdn.net/acdreamers/article/details/8220787
   扩张欧几里德求解逆元
   第二个是用费马小定理求逆元

#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll __int64
#define mod 1000000007
int scan()
{
int res = , ch ;
while( !( ( ch = getchar() ) >= '' && ch <= '' ) )
{
if( ch == EOF ) return << ;
}
res = ch - '' ;
while( ( ch = getchar() ) >= '' && ch <= '' )
res = res * + ( ch - '' ) ;
return res ;
}
char a[];
ll flag[];
void extend_Euclid(ll a, ll b, ll &x, ll &y)
{
if(b == )
{
x = ;
y = ;
return;
}
extend_Euclid(b, a % b, x, y);
ll tmp = x;
x = y;
y = tmp - (a / b) * y;
}
ll combine1(ll n,ll m) //计算组合数C(n,m)
{
ll sum=; //线性计算
for(ll i=,j=n;i<=m;i++,j--)
{
sum*=j;
sum%=mod;
ll x,y;
extend_Euclid(i,mod,x,y);
sum*=(x%mod+mod)%mod;
sum%=mod;
}
return sum;
}
int main()
{
ll x,y,z,i,t;
scanf("%I64d",&z);
while(z--)
{
memset(flag,,sizeof(flag));
scanf("%s",a);
x=strlen(a);
for(i=;i<x;i++)
flag[a[i]-'a']++;
ll sum=;
for(i=;i<;i++)
{
if(flag[i]%)
sum++;
}
if(x%==&&sum)
printf("0\n");
else if(x%==&&sum>)
printf("0\n");
else
{
ll f=x/;
ll ans=;
for(i=;i<;i++)
{
if(flag[i]/)
{
ans*=combine1(f,flag[i]/);
f-=flag[i]/;
ans%=;
}
}
printf("%I64d\n",ans);
}
}
return ;
}
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll __int64
#define mod 1000000007
int scan()
{
int res = , ch ;
while( !( ( ch = getchar() ) >= '' && ch <= '' ) )
{
if( ch == EOF ) return << ;
}
res = ch - '' ;
while( ( ch = getchar() ) >= '' && ch <= '' )
res = res * + ( ch - '' ) ;
return res ;
}
char a[];
ll flag[];
ll poww(ll a,ll n)//快速幂
{
ll r=,p=a;
while(n)
{
if(n&) r=(r*p)%mod;
n>>=;
p=(p*p)%mod;
}
return r;
}
ll combine1(ll n,ll m) //计算组合数C(n,m)
{
ll sum=; //线性计算
for(ll i=,j=n;i<=m;i++,j--)
{
sum*=j;
sum%=mod;
sum*=poww(i,);
sum%=mod;
}
return sum;
}
int main()
{
ll x,y,z,i,t;
scanf("%I64d",&z);
while(z--)
{
memset(flag,,sizeof(flag));
scanf("%s",a);
x=strlen(a);
for(i=;i<x;i++)
flag[a[i]-'a']++;
ll sum=;
for(i=;i<;i++)
{
if(flag[i]%)
sum++;
}
if(x%==&&sum)
printf("0\n");
else if(x%==&&sum>)
printf("0\n");
else
{
ll f=x/;
ll ans=;
for(i=;i<;i++)
{
if(flag[i]/)
{
ans*=combine1(f,flag[i]/);
f-=flag[i]/;
ans%=;
}
}
printf("%I64d\n",ans);
}
}
return ;
}

hdu 5651 xiaoxin juju needs help 逆元 两种求解方式的更多相关文章

  1. HDU 5651 xiaoxin juju needs help 逆元

    题目链接: hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5651 bc:http://bestcoder.hdu.edu.cn/contests/con ...

  2. HDU - 5651 xiaoxin juju needs help 逆元模板

    http://acm.hdu.edu.cn/showproblem.php?pid=5651 题意:生成回文串.输出所有回文串的可能数. 题解:mod除法会损失高位,用逆元来代替除法,模板如下 ac代 ...

  3. HDU 5651 xiaoxin juju needs help 数学

    xiaoxin juju needs help 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5651 Description As we all k ...

  4. HDU 5651 xiaoxin juju needs help (组合数)

    xiaoxin juju needs helpTime Limit: 1000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64uSu ...

  5. HDU 5651 xiaoxin juju needs help

    组合数杨辉三角打表,这样避免了除法求逆元. #include<cstdio> #include<cstring> #include<cmath> #include& ...

  6. HDU 5651 xiaoxin juju needs help 水题一发

    分析:求一下组合数 首先,如果不止一个字符出现的次数为奇数,则结果为0. 否则,我们把每个字符出现次数除2,也就是考虑一半的情况. 那么结果就是这个可重复集合的排列数了. fact(n)/fact(a ...

  7. hdu5651 xiaoxin juju needs help(逆元)

    xiaoxin juju needs help  Accepts: 150  Submissions: 966  Time Limit: 2000/1000 MS (Java/Others)  Mem ...

  8. Web APi之认证(Authentication)两种实现方式【二】(十三)

    前言 上一节我们详细讲解了认证及其基本信息,这一节我们通过两种不同方式来实现认证,并且分析如何合理的利用这两种方式,文中涉及到的基础知识,请参看上一篇文中,就不再叙述废话. 序言 对于所谓的认证说到底 ...

  9. Android中BroadcastReceiver的两种注册方式(静态和动态)详解

    今天我们一起来探讨下安卓中BroadcastReceiver组件以及详细分析下它的两种注册方式. BroadcastReceiver也就是"广播接收者"的意思,顾名思义,它就是用来 ...

随机推荐

  1. Google面试题[一]

    谷歌是不少IT人都想去的企业,那么在进入公司前,少不了面试笔试的测试.那么这里我们就总结了如下谷歌笔试题,并提供了一些参考答案.希望对您有用. 谷歌笔试题:判断一个自然数是否是某个数的平方.当然不能使 ...

  2. [LeetCode] 127. Word Ladder _Medium tag: BFS

    Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest t ...

  3. Selenium - Css Selector 使用方法

    什么是Css Selector? Css Selector定位实际就是HTML的Css选择器的标签定位 工具 Css Selector可以下载火狐浏览器插件,FireFinder 或 FireBug和 ...

  4. Linux系统下C语言程序的构建过程

    本文转载自:http://www.ruanyifeng.com/blog/2014/11/compiler.html 源码要运行,必须先转成二进制的机器码.这是编译器的任务. 比如,下面这段源码(假定 ...

  5. linux常用命令:cal 命令

    cal命令可以用来显示公历(阳历)日历.公历是现在国际通用的历法,又称格列历,通称阳历.“阳历”又名“太阳历”,系以地球绕行太阳一周为一年,为西方各国所通用,故又名“西历”. 1.命令格式: cal  ...

  6. SQL语句常见优化方法

    Sql优化方法 先进行选择运算(where limit)再进行连接运算 where子句中应把过滤性最强的条件放在最前面 where子句中字段的顺序应和组合索引中字段顺序一致 使用索引 使用覆盖索引来避 ...

  7. PDF常见问题总结

    欢迎和大家交流技术相关问题: 邮箱: jiangxinnju@163.com 博客园地址: http://www.cnblogs.com/jiangxinnju GitHub地址: https://g ...

  8. 【转】svn http://提示svn: Unrecognized URL scheme错误

    转自:http://blog.csdn.net/l241002209/article/details/8547943 SVN这个东西虽然不好用(当然也是因为自身没有重视,但是谁让GIT这么好用呢…!) ...

  9. chrome谷歌浏览器用这种方式清除缓存比较方便了,必须是调试模式才行

     chrome谷歌浏览器用这种方式清除缓存比较方便了  PS:必须是调试模式才行,可以不是手机模式 ,有些低版本浏览器可能没有这个功能.   ----------------------------- ...

  10. Struts2快速后台验证 使用

    为了和前台基于JavaScript的开源验证框架RapidValidation使用统一的验证规则, 最大限度的减少重复的后台验证代码, 使用方式简便, 扩展方便. https://blog.csdn. ...