SPF

Description

Consider the two networks shown below. Assuming that data moves around these networks only between directly connected nodes on a peer-to-peer basis, a failure of a single node, 3, in the network on the left would prevent some of the still available nodes from communicating with each other. Nodes 1 and 2 could still communicate with each other as could nodes 4 and 5, but communication between any other pairs of nodes would no longer be possible.

Node 3 is therefore a Single Point of Failure (SPF) for this network. Strictly, an SPF will be defined as any node that, if unavailable, would prevent at least one pair of available nodes from being able to communicate on what was previously a fully connected network. Note that the network on the right has no such node; there is no SPF in the network. At least two machines must fail before there are any pairs of available nodes which cannot communicate. 

Input

The input will contain the description of several networks. A network description will consist of pairs of integers, one pair per line, that identify connected nodes. Ordering of the pairs is irrelevant; 1 2 and 2 1 specify the same connection. All node numbers will range from 1 to 1000. A line containing a single zero ends the list of connected nodes. An empty network description flags the end of the input. Blank lines in the input file should be ignored.

Output

For each network in the input, you will output its number in the file, followed by a list of any SPF nodes that exist.

The first network in the file should be identified as "Network #1", the second as "Network #2", etc. For each SPF node, output a line, formatted as shown in the examples below, that identifies the node and the number of fully connected subnets that remain when that node fails. If the network has no SPF nodes, simply output the text "No SPF nodes" instead of a list of SPF nodes.

Sample Input

1 2
5 4
3 1
3 2
3 4
3 5
0 1 2
2 3
3 4
4 5
5 1
0 1 2
2 3
3 4
4 6
6 3
2 5
5 1
0 0

Sample Output

Network #1
SPF node 3 leaves 2 subnets Network #2
No SPF nodes Network #3
SPF node 2 leaves 2 subnets
SPF node 3 leaves 2 subnets
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define mod 1000000007
#define inf 999999999
int scan()
{
int res = , ch ;
while( !( ( ch = getchar() ) >= '' && ch <= '' ) )
{
if( ch == EOF ) return << ;
}
res = ch - '' ;
while( ( ch = getchar() ) >= '' && ch <= '' )
res = res * + ( ch - '' ) ;
return res ;
}
int dfn[];
int low[];
int head[];
int ans[];
int visit[];
int index,root,son,node,jiedge;
struct is
{
int u,v;
int next;
}edge[];
void add(int x,int y)
{
jiedge++;
edge[jiedge].u=x;
edge[jiedge].v=y;
edge[jiedge].next=head[x];
head[x]=jiedge;
jiedge++;
edge[jiedge].u=y;
edge[jiedge].v=x;
edge[jiedge].next=head[y];
head[y]=jiedge;
}
void dfs(int u)
{
for(int i=head[u];i;i=edge[i].next)
{
int v=edge[i].v;
if(visit[v]==)
{
visit[v]=;++index;
dfn[v]=low[v]=index;
dfs(v);
low[u]=min(low[u],low[v]);
if(low[v]>=dfn[u])
{
if(u==root)
son++;
else
ans[u]++;
}
}
else
low[u]=min(low[u],dfn[v]);
}
}
void trajan()
{
memset(visit,,sizeof(visit));
memset(ans,,sizeof(ans));
index=;
root=;
son=;
low[]=dfn[]=;
visit[]=;
dfs();
}
int main()
{
int u,v;
int flag=;
while(scanf("%d",&u)!=EOF)
{
memset(head,,sizeof(head));
jiedge=;
node=;
if(u==)
break;
scanf("%d",&v);
node=max(node,u);
node=max(node,v);
add(u,v);
while()
{
scanf("%d",&u);
if(u==)
break;
scanf("%d",&v);
add(u,v);
node=max(node,u);
node=max(node,v);
}
trajan();
int kk=;
if(flag!=)
printf("\n");
printf("Network #%d\n",++flag);
if(son>)
{
kk=;
printf(" SPF node %d leaves %d subnets\n",,son);
}
for(int i=;i<=node;i++)
{
if(ans[i])
{
kk=;
printf(" SPF node %d leaves %d subnets\n",i,ans[i]+);
}
}
if(kk)
printf(" No SPF nodes\n");
}
return ;
}

poj 1523 SPF 无向图求割点的更多相关文章

  1. POJ 1523 SPF tarjan求割点

                                                                   SPF Time Limit: 1000MS   Memory Limit ...

  2. POJ 1523 SPF(求割点)

    题目链接 题意 : 找出图中所有的割点,然后输出删掉他们之后还剩多少个连通分量. 思路 : v与u邻接,要么v是u的孩子,要么u是v的祖先,(u,v)构成一条回边. //poj1523 #includ ...

  3. POJ 1523 SPF (无向图割点)

    <题目链接> 题目大意: 给你一个连通的无向图,问你其中割点的编号,并且输出删除该割点后,原图会被分成几个连通分量. 解题分析: Tarjan求割点模板题. #include <cs ...

  4. poj 1523 SPF(双连通分量割点模板)

    题目链接:http://poj.org/problem?id=1523 题意:给出无向图的若干条边,求割点以及各个删掉其中一个割点后将图分为几块. 题目分析:割点用tarjan算法求出来,对于每个割点 ...

  5. poj 1144 Network 无向图求割点

    Network Description A Telephone Line Company (TLC) is establishing a new telephone cable network. Th ...

  6. POJ 1523 SPF (去掉割点能形成联通块的个数)

    思路:使用tarjan算法求出割点,在枚举去掉每一个割点所能形成的联通块的个数. 注意:后来我看了下别的代码,发现我的枚举割点的方式是比较蠢的方式,我们完全可以在tarjan过程中把答案求出来,引入一 ...

  7. UVA 315 Network (模板题)(无向图求割点)

    <题目链接> 题目大意: 给出一个无向图,求出其中的割点数量. 解题分析: 无向图求割点模板题. 一个顶点u是割点,当且仅当满足 (1) u为树根,且u有多于一个子树. (2) u不为树根 ...

  8. poj 1523"SPF"(无向图求割点)

    传送门 题意: 有一张联通网络,求出所有的割点: 对于割点 u ,求将 u 删去后,此图有多少个联通子网络: 对于含有割点的,按升序输出: 题解: DFS求割点入门题,不会的戳这里

  9. zoj 1119 / poj 1523 SPF (典型例题 求割点 Tarjan 算法)

    poj : http://poj.org/problem?id=1523 如果无向图中一个点 u 为割点 则u 或者是具有两个及以上子女的深度优先生成树的根,或者虽然不是一个根,但是它有一个子女 w, ...

随机推荐

  1. (转)Elasticsearch查询规则------match和term

    es种有两种查询模式,一种是像传递URL参数一样去传递查询语句,被称为简单搜索或查询字符串(query string)搜索,比如 GET /megacorp/employee/_search //查询 ...

  2. python3中替换python2中cmp函数

    python 3.4.3 的版本中已经没有cmp函数,被operator模块代替,在交互模式下使用时,需要导入模块. 在没有导入模块情况下,会出现 提示找不到cmp函数了,那么在python3中该如何 ...

  3. [LeetCode] 437. Path Sum III_ Easy tag: DFS

    You are given a binary tree in which each node contains an integer value. Find the number of paths t ...

  4. [LeetCode] 183. Customers Who Never Order_Easy tag: SQL

    Suppose that a website contains two tables, the Customers table and the Orders table. Write a SQL qu ...

  5. shell篇(二)

    Linux的shell种类比较多,常见的有:Bourne Shell(/user/bin/sh或者/bin/sh), Bourne Again Shell(/user/bin/bash或者/bin/b ...

  6. CQRS/ES框架调研

    1.Enode一个C#写的CQRS/ES框架,由汤雪华设计及实现,github上有相关源码,其个人博客上有详细的孵化.设计思路.版本迭代及最新的完善: 2.axon framwork,java编写,网 ...

  7. Azkaban 入门

    需求 实际当中经常有这些场景:每天有一个大任务,这个大任务可以分成A,B,C,D四个小任务,A,B任务之间没有依赖关系,C任务依赖A,B任务的结 果,D任务依赖C任务的结果.一般的做法是,开两个终端同 ...

  8. python3.4学习笔记(九) Python GUI桌面应用开发工具选择

    python3.4学习笔记(九) Python GUI桌面应用开发工具选择 Python GUI开发工具选择 - WEB开发者http://www.admin10000.com/document/96 ...

  9. Jquery获取敲击回车时光标所在的位置

    $(document).keyup(function(event){ ){ //是否是回车 var el = event.srcElement || event.target; var input_t ...

  10. P2864 [USACO06JAN]树林The Grove

    P2864 [USACO06JAN]树林The Grove 神奇的射线法+bfs 裸的bfs很难写....... 那么我们找一个最外围障碍点,向图的外边引一条虚拟射线. 蓝后bfs时经过这条射线奇数次 ...