SPF

Description

Consider the two networks shown below. Assuming that data moves around these networks only between directly connected nodes on a peer-to-peer basis, a failure of a single node, 3, in the network on the left would prevent some of the still available nodes from communicating with each other. Nodes 1 and 2 could still communicate with each other as could nodes 4 and 5, but communication between any other pairs of nodes would no longer be possible.

Node 3 is therefore a Single Point of Failure (SPF) for this network. Strictly, an SPF will be defined as any node that, if unavailable, would prevent at least one pair of available nodes from being able to communicate on what was previously a fully connected network. Note that the network on the right has no such node; there is no SPF in the network. At least two machines must fail before there are any pairs of available nodes which cannot communicate. 

Input

The input will contain the description of several networks. A network description will consist of pairs of integers, one pair per line, that identify connected nodes. Ordering of the pairs is irrelevant; 1 2 and 2 1 specify the same connection. All node numbers will range from 1 to 1000. A line containing a single zero ends the list of connected nodes. An empty network description flags the end of the input. Blank lines in the input file should be ignored.

Output

For each network in the input, you will output its number in the file, followed by a list of any SPF nodes that exist.

The first network in the file should be identified as "Network #1", the second as "Network #2", etc. For each SPF node, output a line, formatted as shown in the examples below, that identifies the node and the number of fully connected subnets that remain when that node fails. If the network has no SPF nodes, simply output the text "No SPF nodes" instead of a list of SPF nodes.

Sample Input

1 2
5 4
3 1
3 2
3 4
3 5
0 1 2
2 3
3 4
4 5
5 1
0 1 2
2 3
3 4
4 6
6 3
2 5
5 1
0 0

Sample Output

Network #1
SPF node 3 leaves 2 subnets Network #2
No SPF nodes Network #3
SPF node 2 leaves 2 subnets
SPF node 3 leaves 2 subnets
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define mod 1000000007
#define inf 999999999
int scan()
{
int res = , ch ;
while( !( ( ch = getchar() ) >= '' && ch <= '' ) )
{
if( ch == EOF ) return << ;
}
res = ch - '' ;
while( ( ch = getchar() ) >= '' && ch <= '' )
res = res * + ( ch - '' ) ;
return res ;
}
int dfn[];
int low[];
int head[];
int ans[];
int visit[];
int index,root,son,node,jiedge;
struct is
{
int u,v;
int next;
}edge[];
void add(int x,int y)
{
jiedge++;
edge[jiedge].u=x;
edge[jiedge].v=y;
edge[jiedge].next=head[x];
head[x]=jiedge;
jiedge++;
edge[jiedge].u=y;
edge[jiedge].v=x;
edge[jiedge].next=head[y];
head[y]=jiedge;
}
void dfs(int u)
{
for(int i=head[u];i;i=edge[i].next)
{
int v=edge[i].v;
if(visit[v]==)
{
visit[v]=;++index;
dfn[v]=low[v]=index;
dfs(v);
low[u]=min(low[u],low[v]);
if(low[v]>=dfn[u])
{
if(u==root)
son++;
else
ans[u]++;
}
}
else
low[u]=min(low[u],dfn[v]);
}
}
void trajan()
{
memset(visit,,sizeof(visit));
memset(ans,,sizeof(ans));
index=;
root=;
son=;
low[]=dfn[]=;
visit[]=;
dfs();
}
int main()
{
int u,v;
int flag=;
while(scanf("%d",&u)!=EOF)
{
memset(head,,sizeof(head));
jiedge=;
node=;
if(u==)
break;
scanf("%d",&v);
node=max(node,u);
node=max(node,v);
add(u,v);
while()
{
scanf("%d",&u);
if(u==)
break;
scanf("%d",&v);
add(u,v);
node=max(node,u);
node=max(node,v);
}
trajan();
int kk=;
if(flag!=)
printf("\n");
printf("Network #%d\n",++flag);
if(son>)
{
kk=;
printf(" SPF node %d leaves %d subnets\n",,son);
}
for(int i=;i<=node;i++)
{
if(ans[i])
{
kk=;
printf(" SPF node %d leaves %d subnets\n",i,ans[i]+);
}
}
if(kk)
printf(" No SPF nodes\n");
}
return ;
}

poj 1523 SPF 无向图求割点的更多相关文章

  1. POJ 1523 SPF tarjan求割点

                                                                   SPF Time Limit: 1000MS   Memory Limit ...

  2. POJ 1523 SPF(求割点)

    题目链接 题意 : 找出图中所有的割点,然后输出删掉他们之后还剩多少个连通分量. 思路 : v与u邻接,要么v是u的孩子,要么u是v的祖先,(u,v)构成一条回边. //poj1523 #includ ...

  3. POJ 1523 SPF (无向图割点)

    <题目链接> 题目大意: 给你一个连通的无向图,问你其中割点的编号,并且输出删除该割点后,原图会被分成几个连通分量. 解题分析: Tarjan求割点模板题. #include <cs ...

  4. poj 1523 SPF(双连通分量割点模板)

    题目链接:http://poj.org/problem?id=1523 题意:给出无向图的若干条边,求割点以及各个删掉其中一个割点后将图分为几块. 题目分析:割点用tarjan算法求出来,对于每个割点 ...

  5. poj 1144 Network 无向图求割点

    Network Description A Telephone Line Company (TLC) is establishing a new telephone cable network. Th ...

  6. POJ 1523 SPF (去掉割点能形成联通块的个数)

    思路:使用tarjan算法求出割点,在枚举去掉每一个割点所能形成的联通块的个数. 注意:后来我看了下别的代码,发现我的枚举割点的方式是比较蠢的方式,我们完全可以在tarjan过程中把答案求出来,引入一 ...

  7. UVA 315 Network (模板题)(无向图求割点)

    <题目链接> 题目大意: 给出一个无向图,求出其中的割点数量. 解题分析: 无向图求割点模板题. 一个顶点u是割点,当且仅当满足 (1) u为树根,且u有多于一个子树. (2) u不为树根 ...

  8. poj 1523"SPF"(无向图求割点)

    传送门 题意: 有一张联通网络,求出所有的割点: 对于割点 u ,求将 u 删去后,此图有多少个联通子网络: 对于含有割点的,按升序输出: 题解: DFS求割点入门题,不会的戳这里

  9. zoj 1119 / poj 1523 SPF (典型例题 求割点 Tarjan 算法)

    poj : http://poj.org/problem?id=1523 如果无向图中一个点 u 为割点 则u 或者是具有两个及以上子女的深度优先生成树的根,或者虽然不是一个根,但是它有一个子女 w, ...

随机推荐

  1. [py]flask动态展示主机内存图

    echarts基础 需要借助这个图来绘制,动态内存图. 绘制步骤 写py脚本来入库日志 选取合适的echart,并观察图所需的数据格式 用flask返回这个静态的echarts 用flask写接口返回 ...

  2. 实习培训——Java基础(2)

    实习培训——Java基础(2) 1  Java 变量类型 在Java语言中,所有的变量在使用前必须声明.声明变量的基本格式如下: type identifier [ = value][, identi ...

  3. python安装HTMLTestRunner

    == https://pypi.org/project/html-testRunner/#files 下载 放在这路径下 cmd中进行安装

  4. [LeetCode] 561. Array Partition I_Easy tag: Sort

    Given an array of 2n integers, your task is to group these integers into n pairs of integer, say (a1 ...

  5. CloudFlare防护下的破绽:寻找真实IP的几条途径

    本文仅代表作者独立观点,本文提及的技术仅供安全研究和渗透测试用途 看Twitter发现CloudFlare总裁什么的最近很高调,北京.香港的跑着参加会议.发表演说什么的,CloudFlare似乎也没那 ...

  6. 软件包管理:源码包管理-源码包与RPM包的区别

    RPM会安装在默认位置,源码包会安装在指定位置. 绝大多数ROM包遵循此规范.写软件包是就固定好了. 主要影响体现在对服务的管理方法,服务的管理分三种:启动,重启动,停止. 启动时使用绝对路径来启动. ...

  7. VS中代码对齐等快捷键

    在VS2008中,选定代码后,按Ctrl+K+F组合键,可以自动进行代码对齐. 注意:要先按下Ctrl和K,再按下F,因为Ctrl+F是查找的快捷键. 也可以先按下Ctrl+K,再按下Ctrl+F. ...

  8. 查看mysql主外键信息

    SELECT  *FROMinformation_schema.key_column_usage tWHERE t.constraint_schema = '库名称'AND t.constraint_ ...

  9. Intro to Python for Data Science Learning 3 - functions

    Functions from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functi ...

  10. 谷歌浏览器使用IE内核

    经常使用谷歌浏览器去到处溜达,可是,居然还不知道谷歌浏览的还有很多新鲜的设置,昨天遇到了调试一个脚本没有出现效果,而在IE中就可以显示所谓的效果: 查询了下,看到谷歌浏览器确实对脚本的部分样式要求还是 ...