1030 Travel Plan (30 分)

A traveler's map gives the distances between cities along the highways, together with the cost of each highway. Now you are supposed to write a program to help a traveler to decide the shortest path between his/her starting city and the destination. If such a shortest path is not unique, you are supposed to output the one with the minimum cost, which is guaranteed to be unique.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 4 positive integers N, M, S, and D, where N (≤500) is the number of cities (and hence the cities are numbered from 0 to N−1); M is the number of highways; S and D are the starting and the destination cities, respectively. Then M lines follow, each provides the information of a highway, in the format:

City1 City2 Distance Cost

where the numbers are all integers no more than 500, and are separated by a space.

Output Specification:

For each test case, print in one line the cities along the shortest path from the starting point to the destination, followed by the total distance and the total cost of the path. The numbers must be separated by a space and there must be no extra space at the end of output.

Sample Input:

4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20

Sample Output:

0 2 3 3 40

分析:水题~

方法一:本题没有涉及有多个前驱结点,直接用Dijkstra,注意用递归输出最短路径的写法即可。

 /**
 * Copyright(c)
 * All rights reserved.
 * Author : Mered1th
 * Date : 2019-02-22-21.43.06
 * Description : A1030
 */
 #include<cstdio>
 #include<cstring>
 #include<iostream>
 #include<cmath>
 #include<algorithm>
 #include<string>
 #include<unordered_set>
 #include<map>
 #include<vector>
 #include<set>
 using namespace std;
 ;
 ;
 int n,m,st,ed;
 int d[maxn],c[maxn],cost[maxn][maxn],G[maxn][maxn],pre[maxn];
 vector<int> tempPath,path;
 bool vis[maxn]={false};
 void Dijkstra(int s){
     fill(d,d+maxn,INF);
     fill(c,c+maxn,INF);
     d[s]=;
     c[s]=;
     ;i<n;i++) pre[i]=i;
     ;i<n;i++){
         ,MIN=INF;
         ;j<n;j++){
             if(d[j]<MIN && vis[j]==false){
                 u=j;
                 MIN=d[j];
             }
         }
         ) return;
         vis[u]=true;
         ;v<n;v++){
             if(G[u][v]!=INF && vis[v]==false){
                 if(d[v]>d[u]+G[u][v]){
                     d[v]=d[u]+G[u][v];
                     c[v]=c[u]+cost[u][v];
                     pre[v]=u;
                 }
                 else if(d[v]==d[u]+G[u][v]){
                     if(c[v]>c[u]+cost[u][v]){
                         c[v]=c[u]+cost[u][v];
                         pre[v]=u;
                     }
                 }
             }
         }
     }
 }

 void DFS(int s,int v){
     if(v==st){
         printf("%d ",st);
         return;
     }
     DFS(s,pre[v]);
     printf("%d ",v);
 }

 int main(){
 #ifdef ONLINE_JUDGE
 #else
     freopen("1.txt", "r", stdin);
 #endif
     cin>>n>>m>>st>>ed;
     int a,b,dis,cos;
     fill(G[],G[]+maxn*maxn,INF);
     ;i<m;i++){
         scanf("%d%d%d%d",&a,&b,&dis,&cos);
         G[a][b]=G[b][a]=dis;
         cost[a][b]=cost[b][a]=cos;
     }
     Dijkstra(st);
     DFS(st,ed);
     printf("%d %d\n",d[ed],c[ed]);
     ;
 }

方法二:Dijkstra+DFS写法

在写Dijkstra的时候不考虑路径的开销cost,只记录最短路径。

而在写DFS函数内再计算每条最短路径的开销,求出最小开销的最短路径并输出。

 /**
 * Copyright(c)
 * All rights reserved.
 * Author : Mered1th
 * Date : 2019-02-22-21.43.06
 * Description : A1030
 */
 #include<cstdio>
 #include<cstring>
 #include<iostream>
 #include<cmath>
 #include<algorithm>
 #include<string>
 #include<unordered_set>
 #include<map>
 #include<vector>
 #include<set>
 using namespace std;
 ;
 ;
 int n,m,st,ed,minCost=INF;
 int d[maxn],cost[maxn][maxn],G[maxn][maxn];
 vector<int> tempPath,path;
 vector<int> pre[maxn];
 bool vis[maxn]={false};
 void Dijkstra(int s){
     fill(d,d+maxn,INF);
     d[s]=;
     ;i<n;i++){
         ,MIN=INF;
         ;j<n;j++){
             if(d[j]<MIN && vis[j]==false){
                 u=j;
                 MIN=d[j];
             }
         }
         ) return;
         vis[u]=true;
         ;v<n;v++){
             if(G[u][v]!=INF && vis[v]==false){
                 if(d[v]>d[u]+G[u][v]){
                     d[v]=d[u]+G[u][v];
                     pre[v].clear();
                     pre[v].push_back(u);
                 }
                 else if(d[v]==d[u]+G[u][v]){
                     pre[v].push_back(u);
                 }
             }
         }
     }
 }

 void DFS(int v){
     if(v==st){
         tempPath.push_back(v);
         ;
         ;i>;i--){
             ];
             tempCost+=cost[id][idNext];
         }
         if(tempCost<minCost){
             minCost=tempCost;
             path=tempPath;
         }
         tempPath.pop_back();
         return;
     }
     tempPath.push_back(v);
     ;i<pre[v].size();i++){
         DFS(pre[v][i]);
     }
     tempPath.pop_back();
 }

 int main(){
 #ifdef ONLINE_JUDGE
 #else
     freopen("1.txt", "r", stdin);
 #endif
     cin>>n>>m>>st>>ed;
     int a,b,dis,cos;
     fill(G[],G[]+maxn*maxn,INF);
     ;i<m;i++){
         scanf("%d%d%d%d",&a,&b,&dis,&cos);
         G[a][b]=G[b][a]=dis;
         cost[a][b]=cost[b][a]=cos;
     }
     Dijkstra(st);
     DFS(ed);
     ;i>=;i--){
         printf("%d ",path[i]);
     }
     printf("%d %d\n",d[ed],minCost);
     ;
 }

1030 Travel Plan (30 分)的更多相关文章

  1. PAT 甲级 1030 Travel Plan (30 分)(dijstra,较简单,但要注意是从0到n-1)

    1030 Travel Plan (30 分)   A traveler's map gives the distances between cities along the highways, to ...

  2. 1030 Travel Plan (30分)(dijkstra 具有多种决定因素)

    A traveler's map gives the distances between cities along the highways, together with the cost of ea ...

  3. 【PAT甲级】1030 Travel Plan (30 分)(SPFA,DFS)

    题意: 输入N,M,S,D(N,M<=500,0<S,D<N),接下来M行输入一条边的起点,终点,通过时间和通过花费.求花费最小的最短路,输入这条路径包含起点终点,通过时间和通过花费 ...

  4. PAT-1030 Travel Plan (30 分) 最短路最小边权 堆优化dijkstra+DFS

    PAT 1030 最短路最小边权 堆优化dijkstra+DFS 1030 Travel Plan (30 分) A traveler's map gives the distances betwee ...

  5. [图算法] 1030. Travel Plan (30)

    1030. Travel Plan (30) A traveler's map gives the distances between cities along the highways, toget ...

  6. 1030 Travel Plan (30)(30 分)

    A traveler's map gives the distances between cities along the highways, together with the cost of ea ...

  7. PAT A 1030. Travel Plan (30)【最短路径】

    https://www.patest.cn/contests/pat-a-practise/1030 找最短路,如果有多条找最小消耗的,相当于找两次最短路,可以直接dfs,数据小不会超时. #incl ...

  8. 1030. Travel Plan (30)

    时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue A traveler's map gives the dista ...

  9. PAT Advanced 1030 Travel Plan (30) [Dijkstra算法 + DFS,最短路径,边权]

    题目 A traveler's map gives the distances between cities along the highways, together with the cost of ...

  10. PAT (Advanced Level) 1030. Travel Plan (30)

    先处理出最短路上的边.变成一个DAG,然后在DAG上进行DFS. #include<iostream> #include<cstring> #include<cmath& ...

随机推荐

  1. slf4j简单使用

    一 slf4j+log4j 1.添加依赖 <!-- https://mvnrepository.com/artifact/org.slf4j/slf4j-log4j12 --> <d ...

  2. <二叉树的基本操作>

    #include<stdio.h> #include<stdlib.h> #include<string.h> #define num 100 #define OK ...

  3. springboot date接收参数

    使用springboot框架对日期类型进行操作,遇到无法保持的情况,一开始报400的错误(解决方法),解决之后日期类型无法保存到数据库,为了解决这个问题,设置了个全局date转换器. 配置方法 1.新 ...

  4. vue 登录验证引擎

    1.router配置: 路由元信息 const router = new VueRouter({ routes: [ { path: '/foo', component: Foo, children: ...

  5. python 学习日志

    1.pip is already installed if you're using Python 2 >=2.7.9 or Python 3 >=3.4 binaries downloa ...

  6. 负margin

    负margin理论: 何谓参考线?参考线就是 margin移动的基准点,此基准点相对于box(自身)是静止的.而margin的数值,就是box相对于参考线的位移量. 一个完整的margin属性是这么写 ...

  7. windows下perl的安装和脚本的运行

    参考 1.windows下perl的安装和脚本的运行: 2.fddb测试fddb的评估方法: 3.gunplot5.2.4-download: 完

  8. opencv2.4.10与VS2013的环境配置

    前言 项目几乎都是图像相关的,一般都会用到opencv开源库,就涉及到windows下opencv的环境配置问题,本文对此进行介绍. 环境 系统环境:win10_x64(其他windows系统类似); ...

  9. 大家一起做训练 第二场 E Cottage Village

    题目来源:CodeForce #15 A 现在有 n 间正方形的房子,其中心点分布在 X轴 上,现在我需要新建一间边长为 t 的房子,要求新房子至少和一间房子相邻,但是不能和其他房子重合.请输出我有多 ...

  10. leetcode:Minimum Depth of Binary Tree【Python版】

    1.类中递归调用添加self: 2.root为None,返回0 3.root不为None,root左右孩子为None,返回1 4.返回l和r最小深度,l和r初始为极大值: # Definition f ...