【CF802L】Send the Fool Further! (hard) 高斯消元
【CF802L】Send the Fool Further! (hard)
题意:给你一棵n个节点的树,每条边有长度,从1号点开始,每次随机选择一个相邻的点走,走到一个叶子时就停止,问期望走的总路程。
$n\le 10^5$
题解:很自然想到游走那题,于是想到高斯消元,但是正常高斯消元是$O(n^3)$的。不过我们有一个套路:在树上进行高斯消元的复杂度是$O(n)$的。
先列出方程:设f(x)表示从x开始期望还要走的路程,x的度数是d,那么$f(x)=\frac {f(fa)+len} d+\frac {\sum f(ch)+len} d$。而在叶子处,方程是形如$f(x)=k\cdot f(fa)+b$的,将其代入父亲的方程,便可以使父亲的方程也变成$f(x)=k\cdot f(fa)+b$的形式,这样一路消上去,就得到了根节点的答案了。
如果想知道所有点的答案的话,再一路消下来就好了。想不到这个套路在pkuwc上用到了233。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn=100010;
const ll P=1000000007;
int n,cnt;
int fa[maxn],to[maxn<<1],nxt[maxn<<1],head[maxn],q[maxn],d[maxn];
ll k[maxn],b[maxn],f[maxn];
inline ll pm(ll x,ll y)
{
ll z=1;
while(y)
{
if(y&1) z=z*x%P;
x=x*x%P,y>>=1;
}
return z;
}
inline void add(int a,int b)
{
to[cnt]=b,nxt[cnt]=head[a],head[a]=cnt++;
}
void dfs(int x)
{
q[++q[0]]=x;
for(int i=head[x];i!=-1;i=nxt[i]) if(to[i]!=fa[x]) fa[to[i]]=x,dfs(to[i]);
}
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
int main()
{
n=rd();
int i,x,y,z;
memset(head,-1,sizeof(head));
for(i=1;i<n;i++) x=rd()+1,y=rd()+1,z=rd(),add(x,y),add(y,x),k[x]++,k[y]++,d[x]++,d[y]++,b[x]+=z,b[y]+=z;
dfs(1);
for(i=n;i>=2;i--) if(d[q[i]]!=1)
{
x=q[i];
ll tmp=pm(k[x],P-2);
k[fa[x]]=(k[fa[x]]-tmp)%P;
b[fa[x]]=(b[fa[x]]+b[x]*tmp)%P;
}
f[1]=b[1]*pm(k[1],P-2)%P;
printf("%lld",(f[1]+P)%P);
return 0;
}
【CF802L】Send the Fool Further! (hard) 高斯消元的更多相关文章
- [高斯消元] POJ 2345 Central heating
Central heating Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 614 Accepted: 286 Des ...
- 【BZOJ-3143】游走 高斯消元 + 概率期望
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2264 Solved: 987[Submit][Status] ...
- 【BZOJ-3270】博物馆 高斯消元 + 概率期望
3270: 博物馆 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 292 Solved: 158[Submit][Status][Discuss] ...
- *POJ 1222 高斯消元
EXTENDED LIGHTS OUT Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9612 Accepted: 62 ...
- [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)
Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...
- hihoCoder 1196 高斯消元·二
Description 一个黑白网格,点一次会改变这个以及与其连通的其他方格的颜色,求最少点击次数使得所有全部变成黑色. Sol 高斯消元解异或方程组. 先建立一个方程组. \(x_i\) 表示这个点 ...
- BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基
[题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...
- SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元
[题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...
- UVALive 7138 The Matrix Revolutions(Matrix-Tree + 高斯消元)(2014 Asia Shanghai Regional Contest)
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...
随机推荐
- webService(SOAP)性能测试脚本
本文以天气预报的webService为基础进行学习 webService地址:http://www.webxml.com.cn/WebServices/WeatherWebService.asmx ...
- WebGL入门
1.清空绘图区 清空绘图区是使用指定的背景颜色填充canvas,使用gl.clearColor设置背景色.gl.clearColor(red, green, blue, alpha).openGL的颜 ...
- LINUX下安装软件方法命令方法
1.通常Linux应用软件的安装包有三种: 1) tar包,如software-1.2.3-1.tar.gz.它是使用UNIX系统的打包工具tar打包的. 2) rpm包,如software-1.2. ...
- MsChart,饼状图
HTML 后台代码:(dt为数据源)数据库中数据Sample 1 Chart1.Series["Series1"].Label = "#PERCENT{P}"; ...
- java.lang.Class<T> -- 反射机制及动态代理
Interface : Person package java_.lang_.component.bean; public interface Person { String area = " ...
- c# new的三种用法
在 C# 中,new 关键字可用作运算符.修饰符或约束. 1)new 运算符:用于创建对象和调用构造函数.这种大家都比较熟悉,没什么好说的了. 2)new 修饰符:在用作修饰符时,new 关键字可以显 ...
- DNS原理入门
原文链接:http://www.ruanyifeng.com/blog/2016/06/dns.html http://www.ruanyifeng.com/blog/2012/05/internet ...
- 02python程序和用户交互
在写程序时,使用python的内置函数来获取用户输入的值. >>> name = input("Input your name:")Input your name ...
- 【代码审计】MIPCMS 远程写入配置文件Getshell
0x00 环境准备 MIPCMS官网:https://www.mipcms.cn 网站源码版本:MIPCMS内容管理系统 V3.1.0(发布时间:2018-01-01) 程序源码下载:http://w ...
- cannot access android.support.v4.app.BaseFragmentActivityJB的解决
//implementation 'com.android.support:appcompat-v7:26.1.0' 改成implementation 'com.android.support:app ...