test20190408(十二省联考)
- 做了十二省联考的题.暂时只更几个比较可做的题目.
异或粽子
- 考试的时候乱搞了个做法.结果以每个大数据点 \(1900+\ ms\) 的优秀效率通过了此题...
乱搞
- 建一颗 \(Trie\) 树,显然可以每次用一个 \(log\) 查询与 \(a_i\) 异或的第 \(p\) 大值.每个数与其他数异或显然最多有前 \(k\) 大有用.如果对每个数把这 \(k\) 个值查询出来,时间复杂度为 \(O(n^2log a_i)\) .
- 考虑一个简单的剪枝,用一个堆维护当前所有查询出的值中前 \(k\) 大.若当前询问与 \(a_i\) 异或的第 \(p\) 大值得到的答案比堆中最小的元素还要小,那么 \(a_i\) 这个数就不用再询问了.
- 配合 \(random\_shffle,reverse\) 等函数乱搞有奇效.
#include<bits/stdc++.h>
using namespace std;
#define ll long long
inline ll read()
{
ll out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
fh=-1,jp=getchar();
while (jp>='0'&&jp<='9')
out=out*10+jp-'0',jp=getchar();
return out*fh;
}
const int MAXN=5e5+10;
const int N=32;
ll a[MAXN];
ll s[MAXN],t=0;
struct Trie
{
int idx;
int ch[MAXN*32][2];
int tot[MAXN*32][2];
Trie(){idx=0;}
void ins(ll x)
{
int u=0;
for(int i=N-1; i>=0; --i)
{
int k=(int)((x>>i)&1LL);
tot[u][k]++;
if(ch[u][k])
u=ch[u][k];
else
u=(ch[u][k]=++idx);
}
}
ll query(ll x,int p)
{
int u=0;
--p;
ll res=0;
for(ll i=N-1; i>=0; --i)
{
int k=(int)((x>>i)&1LL);
int v;
if(ch[u][k^1])
{
if(p>=tot[u][k^1] && ch[u][k])
{
v=k;
p-=tot[u][k^1];
}
else
{
v=k^1;
res+=(1LL<<i);
}
}
else
{
v=k;
}
u=ch[u][v];
}
return res;
}
} T;
priority_queue<ll> q;
int siz=0;
int n,k;
void solve()//One Must Have His Dream.
{
srand(19260817);
random_shuffle(a+1,a+1+n);
reverse(a+1,a+1+n);
for(int i=1; i<=n; ++i)
{
int f=1;
for(int p=1; p<=min(k,i-1) && f; ++p)
{
ll c=T.query(a[i],p);
if(siz<k)
q.push(-c),++siz;
else
{
if(c<=-q.top())
f=0;
else
{
q.pop();
q.push(-c);
}
}
}
T.ins(a[i]);
}
ll ans=0;
while(!q.empty())
{
ll x=q.top();
ans-=x;
q.pop();
}
cout<<ans<<endl;
}
int main()
{
freopen("xor.in","r",stdin);
freopen("xor.out","w",stdout);
n=read(),k=read();
for(int i=1; i<=n; ++i)
a[i]=a[i-1]^read();
a[++n]=0;
solve();
return 0;
}
正常向
- 考后得知为 \(bzoj\) 原题.
- 正常做法:先将每个数与其他数异或的最大值放入堆中.这样所有数两两异或的最大值也一定在其中.
- 每次取堆顶加入答案,弹出堆顶(假设为与 \(a_i\) 异或的第 \(p\) 大)后,用与 \(a_i\) 异或的第 \(p+1\) 大代替.这样每个数会入堆两次.取一半输出.
- 这样做的时间复杂度就是严格 \(O(nloga_i)\) 了.
#include<bits/stdc++.h>
using namespace std;
#define ll long long
inline ll read()
{
ll out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
fh=-1,jp=getchar();
while (jp>='0'&&jp<='9')
out=out*10+jp-'0',jp=getchar();
return out*fh;
}
const int MAXN=5e5+10;
const int N=32;
ll a[MAXN];
ll s[MAXN],t=0;
struct Trie
{
int idx;
int ch[MAXN*32][2];
int tot[MAXN*32][2];
Trie(){idx=0;}
void ins(ll x)
{
int u=0;
for(int i=N-1; i>=0; --i)
{
int k=(int)((x>>i)&1LL);
tot[u][k]++;
if(ch[u][k])
u=ch[u][k];
else
u=(ch[u][k]=++idx);
}
}
ll query(ll x,int p)
{
int u=0;
--p;
ll res=0;
for(ll i=N-1; i>=0; --i)
{
int k=(int)((x>>i)&1LL);
int v;
if(ch[u][k^1])
{
if(p>=tot[u][k^1] && ch[u][k])
{
v=k;
p-=tot[u][k^1];
}
else
{
v=k^1;
res+=(1LL<<i);
}
}
else
{
v=k;
}
u=ch[u][v];
}
return res;
}
} T;
struct node
{
ll x;
int id,p;
bool operator < (const node &rhs) const
{
return x<rhs.x;
}
node(ll x,int id,int p):x(x),id(id),p(p){}
};
priority_queue<node> q;
int siz=0;
int n,k;
void solve()
{
for(int i=1;i<=n;++i)
T.ins(a[i]);
for(int i=1;i<=n;++i)
q.push(node(T.query(a[i],1),i,1));
ll ans=0;
for(int t=1;t<=2*k;++t)
{
node u=q.top();
q.pop();
if(t&1)
ans+=u.x;
int i=u.id,p=u.p;
q.push(node(T.query(a[i],p+1),i,p+1));
}
cout<<ans<<endl;
}
int main()
{
// freopen("xor.in","r",stdin);
// freopen("xor.out","w",stdout);
n=read(),k=read();
for(int i=1; i<=n; ++i)
a[i]=a[i-1]^read();
a[++n]=0;
solve();
return 0;
}
春节十二响
- 清 明 十 二 响.
- 考试的时候做了链的部分分,就往合并的方向上想,但下午有点太昏了太菜了,没想出正解.
- 每个点开一个堆,合并子树时就像合并链那样,启发式合并就好了.
- 启发式合并有可能会 \(swap\) 两个节点的堆,所以要记录一下对应堆的编号.
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
inline int read()
{
int out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
fh=-1,jp=getchar();
while (jp>='0'&&jp<='9')
out=out*10+jp-'0',jp=getchar();
return out*fh;
}
const int MAXN=2e5+10;
int cnt=0,head[MAXN],to[MAXN],nx[MAXN];
int mem[MAXN];
inline void addedge(int u,int v)
{
++cnt;
to[cnt]=v;
nx[cnt]=head[u];
head[u]=cnt;
}
int n;
int dfn[MAXN],dfnidx=0;
int tmp[MAXN];
priority_queue<int> Heap[MAXN];
void dfs(int u)
{
dfn[u]=++dfnidx;
for(int k=head[u];k;k=nx[k])
{
int v=to[k];
dfs(v);
if(Heap[dfn[u]].size()<Heap[dfn[v]].size())
swap(dfn[u],dfn[v]);
int m=Heap[dfn[v]].size();
for(int i=1;i<=m;++i)
{
tmp[i]=max(Heap[dfn[u]].top(),Heap[dfn[v]].top());
Heap[dfn[v]].pop();
Heap[dfn[u]].pop();
}
for(int i=1;i<=m;++i)
Heap[dfn[u]].push(tmp[i]);
}
Heap[dfn[u]].push(mem[u]);
}
int main()
{
// freopen("spring.in","r",stdin);
// freopen("spring.out","w",stdout);
n=read();
for(int i=1;i<=n;++i)
mem[i]=read();
for(int i=2;i<=n;++i)
{
int f=read();
addedge(f,i);
}
ll ans=0;
dfs(1);
while(!Heap[dfn[1]].empty())
{
ans+=Heap[dfn[1]].top();
Heap[dfn[1]].pop();
}
cout<<ans<<endl;
return 0;
}
test20190408(十二省联考)的更多相关文章
- CQOI2019(十二省联考)游记
CQOI2019(十二省联考)游记 Day -? 自从联赛爆炸,\(THUWC\)爆炸,\(WC\)爆炸(就没有不爆炸的)之后我已经无所畏惧... 听说是考\(4.5 h\)吗? Day -1 \(Z ...
- 2019十二省联考 Round 1 && 济南市市中心游记
在这样一场毒瘤的省选中 这道题目无疑是命题人无私的馈赠 大量精心构造的部分分,涵盖了题目中所有涉及的算法 你可以利用这道题目,对你是否能够进入省队进行初步检查 经典的模型.较低的难度和不大的代码量,能 ...
- [十二省联考2019]字符串问题——后缀自动机+parent树优化建图+拓扑序DP+倍增
题目链接: [十二省联考2019]字符串问题 首先考虑最暴力的做法就是对于每个$B$串存一下它是哪些$A$串的前缀,然后按每组支配关系连边,做一遍拓扑序DP即可. 但即使忽略判断前缀的时间,光是连边的 ...
- [十二省联考2019]异或粽子——可持久化trie树+堆
题目链接: [十二省联考2019]异或粽子 求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间. 为了快速得到一个区间的异或和,将原序列做前缀异或和. 对于每个点作为右端点时,我们维护出 ...
- 【BZOJ5495】[十二省联考2019]异或粽子(主席树,贪心)
[BZOJ5495][十二省联考2019]异或粽子(主席树,贪心) 题面 BZOJ 洛谷 题解 这不是送分题吗... 转异或前缀和,构建可持久化\(Trie\). 然后拿一个堆维护每次的最大值,每次如 ...
- 【BZOJ5496】[十二省联考2019]字符串问题(后缀树)
[BZOJ5496][十二省联考2019]字符串问题(后缀树) 题面 BZOJ 洛谷 题解 首先显然可以把具有支配关系的串从\(A\)到\(B\)连一条有向边,如果\(B_i\)是\(A_j\)的前缀 ...
- 【BZOJ5498】[十二省联考2019]皮配(动态规划)
[BZOJ5498][十二省联考2019]皮配(动态规划) 题面 BZOJ 洛谷 题解 先考虑暴力\(dp\),设\(f[i][j][k]\)表示前\(i\)所学校,有\(j\)人在某个阵营,有\(k ...
- P5290 [十二省联考2019]春节十二响
题目地址:P5290 [十二省联考2019]春节十二响 骗分方法 如果你实在一点思路也没有,暴力都不会打,那么请考虑一下骗分. 方法一 输出所有 \(M\) 的和. 期望得分:0分. 实际还有5分 方 ...
- [十二省联考2019]异或粽子 01trie
[十二省联考2019]异或粽子 01trie 链接 luogu 思路 首先求前k大的(xo[i]^xo[j])(i<j). 考场上只想到01trie,不怎么会写可持久,就写了n个01trie,和 ...
随机推荐
- DDD领域模型和充血对象
DDD领域模型 官方说法 领域驱动设计,它是对面向对象的的分析和设计(OOAD,Object Orient Analysis Design)的一个补充,对技术框架进行了分层规划,同时对每个类进行了策略 ...
- TTFB
TTFB Time To First Byte 1.含义 最初的网络请求被发起”到“从服务器接收到第一个字节前”所花费的毫秒数 包含了 TCP连接时间,发送HTTP请求时间和获得响应消息第一个字 ...
- URLConnection和HttpClient使用入门
本讲内容:URLConnection和HttpClient使用入门 在 Android中除了使用WebView控件访问网络以外,还有用代码方式访问网络的方法,代码方式有时候会显得更加灵活.本讲会介绍使 ...
- 从996到ICU——我们终将被自我厌恶
自从996.icu在github上收获了18万点赞以来,超时工作,超负荷劳动似乎成了天下所有“无产阶级者”的共同点.对于这样的剥削制度,我想再多的批评和抨击都不为过.但是今天我想说3个小故事,只为引起 ...
- javascript之构造函数的继承(引用网络)
这个系列的第一部分,主要介绍了如何"封装"数据和方法,以及如何从原型对象生成实例. 今天要介绍的是,对象之间的"继承"的五种方法. 比如,现在有一个" ...
- 3.6 MIPS指令简介
计算机组成 3 指令系统体系结构 3.6 MIPS指令简介 MIPS秉承着指令数量少,指令功能简单的设计理念.那这样的设计理念是如何实现的呢?在这一节,我们就将来分析MIPS指令的特点. 相比于X86 ...
- codeforces 55d//Beautiful numbers// Codeforces Beta Round #51
题意:一个数能整除它所有的位上的数字(除了0),统计这样数的个数. 注意离散化,为了速度更快需存入数组查找. 不要每次memset,记录下已有的长度下符合条件的个数. 数位dp肯定是从高位到低位. 记 ...
- android--------HttpURLConnection的get,post和图片加载
URLConnection是个抽象类,它有两个直接子类分别是HttpURLConnection和JarURLConnection.另外一个重要的类是URL,通常URL可以通过传给构造器一个String ...
- python-day4笔记
1.文件后缀名对python运行没关系 2.Python解释器执行python程序的过程:python3 C:\test.py 1)启动python解释器(内存中) 2)将C:\test.py内容从硬 ...
- HDU-3480 Division (四边形不等式优化DP)
题目大意:将n个数分成m组,将每组的最大值与最小值的平方差加起来,求最小和. 题目分析:先对数排序.定义状态dp(i,j)表示前 j 个数分成 i 组得到的最小和,则状态转移方程为dp(i,j)=mi ...