# 导入第三方包
import pandas as pd

# 导入数据
Knowledge = pd.read_excel(r'F:\\python_Data_analysis_and_mining\\11\\Knowledge.xlsx')
print(Knowledge.shape)
# 返回前5行数据
print(Knowledge.head())

# 构造训练集和测试集
# 导入第三方模块
from sklearn import model_selection
# 将数据集拆分为训练集和测试集
predictors = Knowledge.columns[:-1]
X_train, X_test, y_train, y_test = model_selection.train_test_split(Knowledge[predictors], Knowledge.UNS,
test_size = 0.25, random_state = 1234)
# 导入第三方模块
import numpy as np
from sklearn import neighbors
import matplotlib.pyplot as plt

# 设置待测试的不同k值
K = np.arange(1,np.ceil(np.log2(Knowledge.shape[0])))
k = []
for i in range(len(K)):
k.append(int(K[i]))
K = np.array(k)
# 构建空的列表,用于存储平均准确率
accuracy = []
for k in K:
# 使用10重交叉验证的方法,比对每一个k值下KNN模型的预测准确率
cv_result = model_selection.cross_val_score(neighbors.KNeighborsClassifier(n_neighbors = k, weights = 'distance'),
X_train, y_train, cv = 10, scoring='accuracy')
accuracy.append(cv_result.mean())

# 从k个平均准确率中挑选出最大值所对应的下标
arg_max = np.array(accuracy).argmax()
# 中文和负号的正常显示
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False
# 绘制不同K值与平均预测准确率之间的折线图
plt.plot(K, accuracy)
# 添加点图
plt.scatter(K, accuracy)
# 添加文字说明
plt.text(K[arg_max], accuracy[arg_max], '最佳k值为%s' %int(K[arg_max]))
# 显示图形
plt.show()

# 重新构建模型,并将最佳的近邻个数设置为6
knn_class = neighbors.KNeighborsClassifier(n_neighbors = 6, weights = 'distance')
# 模型拟合
knn_class.fit(X_train, y_train)
# 模型在测试数据集上的预测
predict = knn_class.predict(X_test)
# 构建混淆矩阵
cm = pd.crosstab(predict,y_test)
print(cm)

# 导入第三方模块
import seaborn as sns
from sklearn import metrics

# 将混淆矩阵构造成数据框,并加上字段名和行名称,用于行或列的含义说明
cm = pd.DataFrame(cm)
# 绘制热力图
sns.heatmap(cm, annot = True,cmap = 'GnBu')
# 添加x轴和y轴的标签
plt.xlabel(' Real Lable')
plt.ylabel(' Predict Lable')
# 图形显示
plt.show()

# 模型整体的预测准确率
print(metrics.scorer.accuracy_score(y_test, predict))
# 分类模型的评估报告
print(metrics.classification_report(y_test, predict))

# 读入数据
ccpp = pd.read_excel(r'F:\\python_Data_analysis_and_mining\\11\\CCPP.xlsx')
print(ccpp.shape)
print(ccpp.head())

# 导入第三方包
from sklearn import model_selection
from sklearn.preprocessing import minmax_scale

# 对所有自变量数据作标准化处理
predictors = ccpp.columns[:-1]
X = minmax_scale(ccpp[predictors])
print(X)
# 将数据集拆分为训练集和测试集
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, ccpp.PE, test_size = 0.25, random_state = 1234)
# 设置待测试的不同k值
K = np.arange(1,np.ceil(np.log2(ccpp.shape[0])))
k = []
for i in range(len(K)):
k.append(int(K[i]))
K = np.array(k)
# 构建空的列表,用于存储平均MSE
mse = []
for k in K:
# 使用10重交叉验证的方法,比对每一个k值下KNN模型的计算MSE
cv_result = model_selection.cross_val_score(neighbors.KNeighborsRegressor(n_neighbors = k, weights = 'distance'),
X_train, y_train, cv = 10, scoring='neg_mean_squared_error')
mse.append((-1*cv_result).mean())
# 从k个平均MSE中挑选出最小值所对应的下标
arg_min = np.array(mse).argmin()
# 绘制不同K值与平均MSE之间的折线图
plt.plot(K, mse)
# 添加点图
plt.scatter(K, mse)
# 添加文字说明
plt.text(K[arg_min], mse[arg_min] + 0.5, '最佳k值为%s' %int(K[arg_min]))
# 显示图形
plt.show()

# 重新构建模型,并将最佳的近邻个数设置为7
knn_reg = neighbors.KNeighborsRegressor(n_neighbors = 7, weights = 'distance')
# 模型拟合
knn_reg.fit(X_train, y_train)
# 模型在测试集上的预测
predict = knn_reg.predict(X_test)
# 计算MSE值
a = metrics.mean_squared_error(y_test, predict)
print(a)
# 对比真实值和实际值
b = pd.DataFrame({'Real':y_test,'Predict':predict}, columns=['Real','Predict']).head(10)
print(b)

# 导入第三方模块
from sklearn import tree

# 预设各参数的不同选项值
max_depth = [19,21,23,25,27]
min_samples_split = [2,4,6,8]
min_samples_leaf = [2,4,8,10,12]
parameters = {'max_depth':max_depth, 'min_samples_split':min_samples_split, 'min_samples_leaf':min_samples_leaf}
# 网格搜索法,测试不同的参数值
grid_dtreg = model_selection.GridSearchCV(estimator = tree.DecisionTreeRegressor(), param_grid = parameters, cv=10)
# 模型拟合
grid_dtreg.fit(X_train, y_train)
# 返回最佳组合的参数值
print(grid_dtreg.best_params_)

# 构建用于回归的决策树
CART_Reg = tree.DecisionTreeRegressor(max_depth = 21, min_samples_leaf = 10, min_samples_split = 6)
# 回归树拟合
CART_Reg.fit(X_train, y_train)
# 模型在测试集上的预测
pred = CART_Reg.predict(X_test)
# 计算衡量模型好坏的MSE值
a = metrics.mean_squared_error(y_test, pred)
print(a)

吴裕雄 数据挖掘与分析案例实战(10)——KNN模型的应用的更多相关文章

  1. 吴裕雄 数据挖掘与分析案例实战(15)——DBSCAN与层次聚类分析

    # 导入第三方模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as snsfr ...

  2. 吴裕雄 数据挖掘与分析案例实战(14)——Kmeans聚类分析

    # 导入第三方包import pandas as pdimport numpy as np import matplotlib.pyplot as pltfrom sklearn.cluster im ...

  3. 吴裕雄 数据挖掘与分析案例实战(7)——岭回归与LASSO回归模型

    # 导入第三方模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom sklearn import mod ...

  4. 吴裕雄 数据挖掘与分析案例实战(5)——python数据可视化

    # 饼图的绘制# 导入第三方模块import matplotlibimport matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['S ...

  5. 吴裕雄 数据挖掘与分析案例实战(3)——python数值计算工具:Numpy

    # 导入模块,并重命名为npimport numpy as np# 单个列表创建一维数组arr1 = np.array([3,10,8,7,34,11,28,72])print('一维数组:\n',a ...

  6. 吴裕雄 数据挖掘与分析案例实战(2)——python数据结构及方法、控制流、字符串处理、自定义函数

    list1 = ['张三','男',33,'江苏','硕士','已婚',['身高178','体重72']]# 取出第一个元素print(list1[0])# 取出第四个元素print(list1[3] ...

  7. 吴裕雄 数据挖掘与分析案例实战(13)——GBDT模型的应用

    # 导入第三方包import pandas as pdimport matplotlib.pyplot as plt # 读入数据default = pd.read_excel(r'F:\\pytho ...

  8. 吴裕雄 数据挖掘与分析案例实战(12)——SVM模型的应用

    import pandas as pd # 导入第三方模块from sklearn import svmfrom sklearn import model_selectionfrom sklearn ...

  9. 吴裕雄 数据挖掘与分析案例实战(8)——Logistic回归分类模型

    import numpy as npimport pandas as pdimport matplotlib.pyplot as plt # 自定义绘制ks曲线的函数def plot_ks(y_tes ...

随机推荐

  1. golang cannot assign to

    问题: # command-line-arguments .\example.go:22: cannot assign to m.V.(BasicMessage).Length 想在函数中修改inte ...

  2. [转]oracle导入提示“IMP-00010:不是有效的导出文件,头部验证失败”的解决方案

    这是由于导出的dmp文件与导入的数据库的版本不同造成的用Notepad++查看了dmp文件,在头部具修改成你将导入目标数据库的版本号以下对应的版本号: 11g R2:V11.02.00 11g R1: ...

  3. 性能计数器监控typeperf

    获取性能计数器名称列表: typeperf -qx 监控: typeperf.exe "\JetByte TCP Stats Perf Counters Service\IPv4: ESTA ...

  4. Oracle查看及修改Oracle最大连接数

    Oracle查看及修改Oracle最大连接数 .查询oracle的最大连接数: select * from v$parameter where name='processes'; .oracle 11 ...

  5. Bootstrap-CSS:概况

    ylbtech-Bootstrap-CSS:概况 1.返回顶部 1. Bootstrap CSS 概览 在这一章中,我们将讲解 Bootstrap 底层结构的关键部分,包括我们让 web 开发变得更好 ...

  6. 杂项-自动化测试工具:Selenium(浏览器自动化测试框架)

    ylbtech-杂项-自动化测试工具:Selenium(浏览器自动化测试框架) Selenium 是一个用于Web 应用程序测试的工具.Selenium 测试直接运行在浏览器中,就像真正的用户在操作一 ...

  7. Unreal Engine 4 反射机制的实现

    转自:http://blog.csdn.net/noahzuo/article/details/51482255 反射机制 反射机制指的是程序可以在运行期间进行检测和修改自己状态的能力. UE4引擎使 ...

  8. 清理mysql binlog日志

    1.查看binlog日志 mysql> show binary logs; +------------------+------------+| Log_name         | File_ ...

  9. 配置Ubuntu虚拟环境

    1.ubuntu默认root用户没有激活,激活root用户,就要为root用户创建密码 $sudo passwd root   2.修改主机名 $vi /etc/hostname   3.安装ssh服 ...

  10. png-CRC32校验

    官方文档: https://www.w3.org/TR/PNG-CRCAppendix.html CRC32校验的数据,看原文 A four-byte CRC (Cyclic Redundancy C ...