3.2_k-近邻算法案例分析
k-近邻算法案例分析
本案例使用最著名的”鸢尾“数据集,该数据集曾经被Fisher用在经典论文中,目前作为教科书般的数据样本预存在Scikit-learn的工具包中。
读入Iris数据集细节资料
from sklearn.datasets import load_iris
# 使用加载器读取数据并且存入变量iris
iris = load_iris() # 查验数据规模
iris.data.shape # 查看数据说明(这是一个好习惯)
print iris.DESCR
通过上述代码对数据的查验以及数据本身的描述,我们了解到Iris数据集共有150朵鸢尾数据样本,并且均匀分布在3个不同的亚种;每个数据样本有总共4个不同的关于花瓣、花萼的形状特征所描述。由于没有制定的测试集合,因此按照惯例,我们需要对数据进行随即分割,25%的样本用于测试,其余75%的样本用于模型的训练。
由于不清楚数据集的排列是否随机,可能会有按照类别去进行依次排列,这样训练样本的不均衡的,所以我们需要分割数据,已经默认有随机采样的功能。
对Iris数据集进行分割
from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test = train_test_split(iris.data,iris.target,test_size=0.25,random_state=42)
对特征数据进行标准化
from sklearn.preprocessing import StandardScaler ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.fit_transform(X_test)
K近邻算法是非常直观的机器学习模型,我们可以发现K近邻算法没有参数训练过程,也就是说,我们没有通过任何学习算法分析训练数据,而只是根据测试样本训练数据的分布直接作出分类决策。因此,K近邻属于无参数模型中非常简单一种。
from sklearn.datasets import load_iris
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
from sklearn.model_selection import GridSearchCV def knniris():
"""
鸢尾花分类
:return: None
""" # 数据集获取和分割
lr = load_iris() x_train, x_test, y_train, y_test = train_test_split(lr.data, lr.target, test_size=0.25) # 进行标准化 std = StandardScaler() x_train = std.fit_transform(x_train)
x_test = std.transform(x_test) # estimator流程
knn = KNeighborsClassifier() # # 得出模型
# knn.fit(x_train,y_train)
#
# # 进行预测或者得出精度
# y_predict = knn.predict(x_test)
#
# # score = knn.score(x_test,y_test) # 通过网格搜索,n_neighbors为参数列表
param = {"n_neighbors": [3, 5, 7]} gs = GridSearchCV(knn, param_grid=param, cv=10) # 建立模型
gs.fit(x_train,y_train) # print(gs) # 预测数据 print(gs.score(x_test,y_test)) # 分类模型的精确率和召回率 # print("每个类别的精确率与召回率:",classification_report(y_test, y_predict,target_names=lr.target_names)) return None if __name__ == "__main__":
knniris()
3.2_k-近邻算法案例分析的更多相关文章
- 机器学习之利用KNN近邻算法预测数据
前半部分是简介, 后半部分是案例 KNN近邻算法: 简单说就是采用测量不同特征值之间的距离方法进行分类(k-Nearest Neighbor,KNN) 优点: 精度高.对异常值不敏感.无数据输入假定 ...
- 机器学习入门KNN近邻算法(一)
1 机器学习处理流程: 2 机器学习分类: 有监督学习 主要用于决策支持,它利用有标识的历史数据进行训练,以实现对新数据的表示的预测 1 分类 分类计数预测的数据对象是离散的.如短信是否为垃圾短信,用 ...
- 02机器学习实战之K近邻算法
第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k ...
- 【MySQL】排序原理与案例分析
前言 排序是数据库中的一个基本功能,MySQL也不例外.用户通过Order by语句即能达到将指定的结果集排序的目的,其实不仅仅是Order by语句,Group by语句,Distinct语句都会隐 ...
- 从K近邻算法谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...
- WebLogic集群案例分析
WebLogic集群案例分析 2012年8月,某证券交易系统(采用Weblogic中间件),由于基金业务火爆,使系统压力太大,后台服务器频繁死机时,这时工程师们紧急调试系统及恢复操作,等完成这些操作花 ...
- 《大型网站技术架构:核心原理与案例分析》【PDF】下载
<大型网站技术架构:核心原理与案例分析>[PDF]下载链接: https://u253469.pipipan.com/fs/253469-230062557 内容简介 本书通过梳理大型网站 ...
- 个人作业2:QQ音乐APP案例分析
APP案例分析 QQ音乐 选择理由:毕竟作为QQ音乐九年的资深老用户以及音乐爱好者 第一部分 调研 1.第一次上手的体验 我算是很早期的QQ音乐的用户,用QQ音乐七八年,除了体验各方面还不错之外 ...
- 《深入理解Java虚拟机》-----第5章 jvm调优案例分析与实战
案例分析 高性能硬件上的程序部署策略 例 如 ,一个15万PV/天左右的在线文档类型网站最近更换了硬件系统,新的硬件为4个CPU.16GB物理内存,操作系统为64位CentOS 5.4 , Resin ...
随机推荐
- PHPEmailer使用简介(以qq邮箱为例)
1.从网上下载PHPEmailer: 2.确保PHP环境支持sockets扩展,还要开启openssl,如下图: 3.配置QQ邮箱 1.开启SMTP服务 2.验证密保 3.获取授权码(这个就是IMAP ...
- 设置Linux系统的空闲等待时间TMOUT
为了增强Linux系统的安全性,我们需要在用户输入空闲一段时间后自动断开,这个操作可以由设置TMOUT值来实现.将以下字段加入到/etc/profile 中即可(对所有用户生效). export TM ...
- Django中更新多个对象数据与删除对象的方法
更新多个对象 例如说我们现在想要将Apress Publisher的名称由原来的”Apress”更改为”Apress Publishing”.若使用save()方法,如: ? 1 2 3 >&g ...
- Qt treewidget样式的自定义(转)
这个treewidget样式真是写得让人心碎,主因是那个天杀的表头,真是块古里古怪的硬骨头,令人抓狂,一直找不到给表头设定背景图的方法,让我一度决定弃用tree. 后来表头的属性找到了,下拉条又找不到 ...
- Eclipse相对路径
Eclipse将java源文件存于src文件夹,而编译生成的class文件存于bin目录下,故以下代码输出的结果为false public class FileTest { public static ...
- Angular 4 子路由
子子路由 现在要为产品组件增加两个子组件 1. 创建productDesc和sellerInfo两个组件 ng g component productDesc ng g component selle ...
- linux vnc 安装
http://blog.csdn.net/mchdba/article/details/49306383
- dede的织梦问答模块也可以支持arclist标签
dedecms织梦问答等模块支持arclist标签,实现随机调用其他栏目文章 就是让模块模板文件支持调用主站的模板,因为调用主站下的/templets/default/模板,也就实现了支持调用所有标签 ...
- linux 信号处理 五 (示例)
[摘要]本文分析了Linux内核对于信号的实现机制和应用层的相关处理.首先介绍了软中断信号的本质及信号的两种不同分类方法尤其是不可靠信号的原理.接着分析了内核对于信号的处理流程包括信号的触发/注册/执 ...
- java实验四——测试梯形类
package hello; public class TestTixing { public static void main(String[] args) { // TODO Auto-gener ...