3.2_k-近邻算法案例分析
k-近邻算法案例分析
本案例使用最著名的”鸢尾“数据集,该数据集曾经被Fisher用在经典论文中,目前作为教科书般的数据样本预存在Scikit-learn的工具包中。
读入Iris数据集细节资料
from sklearn.datasets import load_iris
# 使用加载器读取数据并且存入变量iris
iris = load_iris() # 查验数据规模
iris.data.shape # 查看数据说明(这是一个好习惯)
print iris.DESCR
通过上述代码对数据的查验以及数据本身的描述,我们了解到Iris数据集共有150朵鸢尾数据样本,并且均匀分布在3个不同的亚种;每个数据样本有总共4个不同的关于花瓣、花萼的形状特征所描述。由于没有制定的测试集合,因此按照惯例,我们需要对数据进行随即分割,25%的样本用于测试,其余75%的样本用于模型的训练。
由于不清楚数据集的排列是否随机,可能会有按照类别去进行依次排列,这样训练样本的不均衡的,所以我们需要分割数据,已经默认有随机采样的功能。
对Iris数据集进行分割
from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test = train_test_split(iris.data,iris.target,test_size=0.25,random_state=42)
对特征数据进行标准化
from sklearn.preprocessing import StandardScaler ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.fit_transform(X_test)
K近邻算法是非常直观的机器学习模型,我们可以发现K近邻算法没有参数训练过程,也就是说,我们没有通过任何学习算法分析训练数据,而只是根据测试样本训练数据的分布直接作出分类决策。因此,K近邻属于无参数模型中非常简单一种。
from sklearn.datasets import load_iris
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report
from sklearn.model_selection import GridSearchCV def knniris():
"""
鸢尾花分类
:return: None
""" # 数据集获取和分割
lr = load_iris() x_train, x_test, y_train, y_test = train_test_split(lr.data, lr.target, test_size=0.25) # 进行标准化 std = StandardScaler() x_train = std.fit_transform(x_train)
x_test = std.transform(x_test) # estimator流程
knn = KNeighborsClassifier() # # 得出模型
# knn.fit(x_train,y_train)
#
# # 进行预测或者得出精度
# y_predict = knn.predict(x_test)
#
# # score = knn.score(x_test,y_test) # 通过网格搜索,n_neighbors为参数列表
param = {"n_neighbors": [3, 5, 7]} gs = GridSearchCV(knn, param_grid=param, cv=10) # 建立模型
gs.fit(x_train,y_train) # print(gs) # 预测数据 print(gs.score(x_test,y_test)) # 分类模型的精确率和召回率 # print("每个类别的精确率与召回率:",classification_report(y_test, y_predict,target_names=lr.target_names)) return None if __name__ == "__main__":
knniris()
3.2_k-近邻算法案例分析的更多相关文章
- 机器学习之利用KNN近邻算法预测数据
前半部分是简介, 后半部分是案例 KNN近邻算法: 简单说就是采用测量不同特征值之间的距离方法进行分类(k-Nearest Neighbor,KNN) 优点: 精度高.对异常值不敏感.无数据输入假定 ...
- 机器学习入门KNN近邻算法(一)
1 机器学习处理流程: 2 机器学习分类: 有监督学习 主要用于决策支持,它利用有标识的历史数据进行训练,以实现对新数据的表示的预测 1 分类 分类计数预测的数据对象是离散的.如短信是否为垃圾短信,用 ...
- 02机器学习实战之K近邻算法
第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k ...
- 【MySQL】排序原理与案例分析
前言 排序是数据库中的一个基本功能,MySQL也不例外.用户通过Order by语句即能达到将指定的结果集排序的目的,其实不仅仅是Order by语句,Group by语句,Distinct语句都会隐 ...
- 从K近邻算法谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...
- WebLogic集群案例分析
WebLogic集群案例分析 2012年8月,某证券交易系统(采用Weblogic中间件),由于基金业务火爆,使系统压力太大,后台服务器频繁死机时,这时工程师们紧急调试系统及恢复操作,等完成这些操作花 ...
- 《大型网站技术架构:核心原理与案例分析》【PDF】下载
<大型网站技术架构:核心原理与案例分析>[PDF]下载链接: https://u253469.pipipan.com/fs/253469-230062557 内容简介 本书通过梳理大型网站 ...
- 个人作业2:QQ音乐APP案例分析
APP案例分析 QQ音乐 选择理由:毕竟作为QQ音乐九年的资深老用户以及音乐爱好者 第一部分 调研 1.第一次上手的体验 我算是很早期的QQ音乐的用户,用QQ音乐七八年,除了体验各方面还不错之外 ...
- 《深入理解Java虚拟机》-----第5章 jvm调优案例分析与实战
案例分析 高性能硬件上的程序部署策略 例 如 ,一个15万PV/天左右的在线文档类型网站最近更换了硬件系统,新的硬件为4个CPU.16GB物理内存,操作系统为64位CentOS 5.4 , Resin ...
随机推荐
- [LeetCode&Python] Problem 566. Reshape the Matrix
In MATLAB, there is a very useful function called 'reshape', which can reshape a matrix into a new o ...
- egret游戏入门之学习资源篇
最近因需要,入手H5游戏. 写游戏当然需要有引擎. H5游戏开发:游戏引擎入门推荐 如何选择 H5 游戏引擎 白鹭引擎和layabox哪个好用,哪个技术更成熟 ? LayaBox 与 Egret 选择 ...
- day40 python MySQL【四】 之 【索引】【视图】【触发器】【存储过程】【函数】
MySQL[四] 之 [索引][视图][触发器][存储过程][函数] 1.索引 索引相当于图书的目录,可以帮助用户快速的找到需要的内容. 数据库利用各种各样的快速定位技术,能够大大提高查询效率.特 ...
- TensorFlow笔记-07-神经网络优化-学习率,滑动平均
TensorFlow笔记-07-神经网络优化-学习率,滑动平均 学习率 学习率 learning_rate: 表示了每次参数更新的幅度大小.学习率过大,会导致待优化的参数在最小值附近波动,不收敛:学习 ...
- Xamarin版的C# SVG路径解析器
原文:Xamarin版的C# SVG路径解析器 Xamarin版的C# SVG路径解析器,对SVG的Path路径进行解析,其中包括: 主程序SvgPathParser.cs, 相关接口定义:ISour ...
- 02.将uboot,kernel,rootfs下载到开发板上
转载,侵删 将uboot,kernel,rootfs下载到开发板上 1.为什么要下载 所谓下载,也称烧录,部署. 1.1.什么是u-boot Hi3518EV200 单板的 Bootloader 采用 ...
- tomcat源码阅读之部署器
我们知道web应用是用Context实例表示的,而Context是部署到Host实例中的,因此tomcat的部署器是关联的Host实例.Context实例可以用WAR文件部署,也可以把整个web应用的 ...
- java的关键字:static、final
java的 static: 性质 静态对象 非静态对象 拥有属性: 是类共同拥有的 是类各对象独立拥有的 内存分配: 内存空间上是固定的 空间在各个附属类里面分配 分配顺序: 先分配静态对象的空间 继 ...
- react-router4.0的使用
近来很忙,学了一波react,特来记一笔,分享下react-router的使用方式 第一步引入内部组件 import {Route,BrowserRouter as Router,Switch,Lin ...
- 阿里巴巴Java开发手册-并发处理
1. [强制]获取单例对象需要保证线程安全,其中的方法也要保证线程安全.说明:资源驱动类.工具类.单例工厂类都需要注意. 2. [强制]创建线程或线程池时请指定有意义的线程名称,方便出错时回溯.正例: ...