大意: 给定01矩阵, m个操作, 操作1翻转一个点, 操作2求边界包含给定点的最大全1子矩阵

暴力枚举矩形高度, 双指针统计答案

#include <iostream>
#include <algorithm>
#include <math.h>
#include <cstdio>
#include <set>
#include <map>
#include <string>
#include <vector>
#include <string.h>
#include <queue>
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define REP(i,a,n) for(int i=a;i<=n;++i)
using namespace std; const int N = 1e3+10, INF = 0x3f3f3f3f;
int n, m, q;
int a[N][N], U[N][N], D[N][N], L[N][N], R[N][N]; void init() {
REP(i,1,n) REP(j,1,m) if (a[i][j]) {
U[i][j]=U[i-1][j]+1;
L[i][j]=L[i][j-1]+1;
}
PER(i,1,n) PER(j,1,m) if (a[i][j]) {
D[i][j]=D[i+1][j]+1;
R[i][j]=R[i][j+1]+1;
}
} void update(int x, int y) {
a[x][y] ^= 1;
REP(i,1,n) U[i][y]=(a[i][y]?U[i-1][y]+1:0);
PER(i,1,n) D[i][y]=(a[i][y]?D[i+1][y]+1:0);
REP(i,1,m) L[x][i]=(a[x][i]?L[x][i-1]+1:0);
PER(i,1,m) R[x][i]=(a[x][i]?R[x][i+1]+1:0);
} int query(int x, int y) {
int ans = 0, t = U[x][y], l = y, r = y;
PER(i,1,U[x][y]) {
while (l>1&&U[x][l-1]>=i) --l;
while (r<m&&U[x][r+1]>=i) ++r;
if (U[x][l]>=i&&U[x][r]>=i) {
ans = max(ans, i*(r-l+1));
}
}
t = D[x][y], l = y, r = y;
PER(i,1,D[x][y]) {
while (l>1&&D[x][l-1]>=i) --l;
while (r<m&&D[x][r+1]>=i) ++r;
if (D[x][l]>=i&&D[x][r]>=i) {
ans = max(ans, i*(r-l+1));
}
}
t = L[x][y], l = x, r = x;
PER(i,1,L[x][y]) {
while (l>1&&L[l-1][y]>=i) --l;
while (r<n&&L[r+1][y]>=i) ++r;
if (L[l][y]>=i&&L[r][y]>=i) {
ans = max(ans, i*(r-l+1));
}
}
t = R[x][y], l = x, r = x;
PER(i,1,R[x][y]) {
while (l>1&&R[l-1][y]>=i) --l;
while (r<n&&R[r+1][y]>=i) ++r;
if (R[l][y]>=i&&R[r][y]>=i) {
ans = max(ans, i*(r-l+1));
}
}
return ans;
} int main() {
scanf("%d%d%d", &n, &m, &q);
REP(i,1,n) REP(j,1,m) scanf("%d", &a[i][j]);
init();
REP(i,1,q) {
int op, x, y;
scanf("%d%d%d", &op, &x, &y);
if (op==1) update(x,y);
else printf("%d\n", query(x,y));
}
}

Nanami's Digital Board CodeForces - 434B (棋盘dp)的更多相关文章

  1. codeforces 434B B. Nanami's Digital Board(分治)

    题目链接: B. Nanami's Digital Board time limit per test 1 second memory limit per test 256 megabytes inp ...

  2. Codeforces Round #248 (Div. 1) B. Nanami's Digital Board 暴力 前缀和

    B. Nanami's Digital Board 题目连接: http://www.codeforces.com/contest/434/problem/B Description Nanami i ...

  3. Nanami's Digital Board

    题意: 给出点(x1,y1),求以x=x1为上边界,或下边界:以y=y1为左边界,或右边界矩形的最大值(矩形内所有的点均为1) 定义四个数组lft[][],rht[][],up[][],down[][ ...

  4. 炮(棋盘DP)

    一直以为自己写的就是状态压缩,结果写完才知道是个棋盘dp 首先看一下题目 嗯,象棋 ,还是只有炮的象棋 对于方案数有几种,我第一个考虑是dfs,但是超时稳稳的,所以果断放弃 然后记得以前有过和这个题差 ...

  5. P1006 传纸条[棋盘DP]

    题目来源:洛谷 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接 ...

  6. Codeforces Round #248 (Div. 1)——Nanami&#39;s Digital Board

    题目连接 题意: 给n*m的0/1矩阵,q次操作,每次有两种:1)将x,y位置值翻转 2)计算以(x,y)为边界的矩形的面积最大值 (1 ≤ n, m, q ≤ 1000) 分析: 考虑以(x,y)为 ...

  7. codeforces248(div1) B Nanami&#39;s Digital Board

    q次询问,每次询问能够对矩阵某一个值改变(0变1.1变0) 或者是查询子矩阵的最大面积,要求这个这个点在所求子矩阵的边界上,且子矩阵各店中全为1 用up[i][j]表示(i,j)这个点向上能走到的最长 ...

  8. codeforces 682D(DP)

    题目链接:http://codeforces.com/contest/682/problem/D 思路:dp[i][j][l][0]表示a串前i和b串前j利用a[i] == b[j]所得到的最长子序列 ...

  9. codeforces 666A (DP)

    题目链接:http://codeforces.com/problemset/problem/666/A 思路:dp[i][0]表示第a[i-1]~a[i]组成的字符串是否可行,dp[i][1]表示第a ...

随机推荐

  1. Python2 和Python3 的差异总结

    一.基本语法差异 1.1 核心类差异 Python3对Unicode字符的原生支持 Python2中使用 ASCII 码作为默认编码方式导致string有两种类型str和unicode,Python3 ...

  2. 联合体union的详解

    1.概述 联合体union的定义方式与结构体一样,但是二者有根本区别. 在结构中各成员有各自的内存空间,一个结构变量的总长度是各成员长度之和.而在“联合”中,各成员共享一段内存空间,一个联合变量的长度 ...

  3. iOS开发-OpenGL ES入门教程1

    http://www.jianshu.com/p/750fde1d8b6a 这里是一篇新手教程,环境是Xcode7+OpenGL ES 2.0,目标写一个OpenGL ES的hello world.O ...

  4. 为什么采用4~20mA的电流来传输模拟量?(转)

    源: 为什么采用4~20mA的电流来传输模拟量?

  5. MySQL Crash Course #17# Chapter 25. 触发器(Trigger)

    推荐看这篇mysql 利用触发器(Trigger)让代码更简单 以及 23.3.1 Trigger Syntax and Examples 感觉有点像 Spring 里的 AOP 我们为什么需要触发器 ...

  6. 20145304 Exp8 Web基础

    20145304 Exp8 Web基础 实验后回答问题 (1)什么是表单 表单用于搜集不同类型的用户输入,由三个基本组成部分表单标签.表单域.表单按钮.表单提交有两种方法,分别是get和post,使用 ...

  7. 20145310《网络对抗》Exp2 后门原理与实践

    实验内容 (1)使用netcat获取主机操作Shell,cron启动,使用socat获取主机操作Shell, 任务计划启动. (2)使用MSF meterpreter生成可执行文件,利用ncat或so ...

  8. 20145319 《网络渗透》web安全基础实践

    20145319 <网络渗透>web安全基础实践 问题回答 Sql注入攻击原理,如何防御 攻击原理:由于对于用户输入并没做出相应限制,因此可以通过构造特定的sql语句,达到自身的一些非法目 ...

  9. MySQL命令行导出、导入数据库,备份数据库表

    MySQL导出数据库/数据表 1.首先,将你MySQL安装目录,例如C:\Program Files\MySQL\MySQL Server 5.7\bin添加到你的系统环境变量PATH中: 2.导出数 ...

  10. 【附8】zipkin

    一.zipkin作用 全链路追踪工具(查看依赖关系) 查看每个接口.每个service的执行速度(定位问题发生点或者寻找性能瓶颈) 二.zipkin工作原理 创造一些追踪标识符(tracingId,s ...