Getting in Line 

Computer networking requires that the computers in the network be linked.

This problem considers a ``linear" network in which the computers are chained together so that each is connected to exactly two others except for the two computers on the ends of the chain which are connected to only one other computer. A picture is shown below. Here the computers are the black dots and their locations in the network are identified by planar coordinates (relative to a coordinate system not shown in the picture).

Distances between linked computers in the network are shown in feet.

For various reasons it is desirable to minimize the length of cable used.

Your problem is to determine how the computers should be connected into such a chain to minimize the total amount of cable needed. In the installation being constructed, the cabling will run beneath the floor, so the amount of cable used to join 2 adjacent computers on the network will be equal to the distance between the computers plus 16 additional feet of cable to connect from the floor to the computers and provide some slack for ease of installation.

The picture below shows the optimal way of connecting the computers shown above, and the total length of cable required for this configuration is (4+16)+ (5+16) + (5.83+16) + (11.18+16) = 90.01 feet.

Input

The input file will consist of a series of data sets. Each data set will begin with a line consisting of a single number indicating the number of computers in a network. Each network has at least 2 and at most 8 computers. A value of 0 for the number of computers indicates the end of input.

After the initial line in a data set specifying the number of computers in a network, each additional line in the data set will give the coordinates of a computer in the network. These coordinates will be integers in the range 0 to 150. No two computers are at identical locations and each computer will be listed once.

Output

The output for each network should include a line which tells the number of the network (as determined by its position in the input data), and one line for each length of cable to be cut to connect each adjacent pair of computers in the network. The final line should be a sentence indicating the total amount of cable used.

In listing the lengths of cable to be cut, traverse the network from one end to the other. (It makes no difference at which end you start.) Use a format similar to the one shown in the sample output, with a line of asterisks separating output for different networks and with distances in feet printed to 2 decimal places.

Sample Input

6
5 19
55 28
38 101
28 62
111 84
43 116
5
11 27
84 99
142 81
88 30
95 38
3
132 73
49 86
72 111
0

Sample Output

**********************************************************
Network #1
Cable requirement to connect (5,19) to (55,28) is 66.80 feet.
Cable requirement to connect (55,28) to (28,62) is 59.42 feet.
Cable requirement to connect (28,62) to (38,101) is 56.26 feet.
Cable requirement to connect (38,101) to (43,116) is 31.81 feet.
Cable requirement to connect (43,116) to (111,84) is 91.15 feet.
Number of feet of cable required is 305.45.
**********************************************************
Network #2
Cable requirement to connect (11,27) to (88,30) is 93.06 feet.
Cable requirement to connect (88,30) to (95,38) is 26.63 feet.
Cable requirement to connect (95,38) to (84,99) is 77.98 feet.
Cable requirement to connect (84,99) to (142,81) is 76.73 feet.
Number of feet of cable required is 274.40.
**********************************************************
Network #3
Cable requirement to connect (132,73) to (72,111) is 87.02 feet.
Cable requirement to connect (72,111) to (49,86) is 49.97 feet.
Number of feet of cable required is 136.99.

就是求最小生成树,可以回溯+搜索,因为n<=8所以可以暴力枚举,我在边界条件卡了很久。

#include<iostream>
#include<algorithm>
#include<iomanip>
#include<cstring>
#include<cmath>
#include<cstdio> using namespace std; int num[10];
int num1[10];
int n; class P
{
public:
int x,y;
}point[10]; double dis()
{
double sum=0;
for(int i=1;i<n;i++)
{
sum=sum+sqrt((point[num[i]].x-point[num[i-1]].x)*(point[num[i]].x-point[num[i-1]].x)+(point[num[i]].y-point[num[i-1]].y)*(point[num[i]].y-point[num[i-1]].y))+16;
}
return sum;
} int main()
{
int k=0;
while(cin>>n&&n)
{
memset(point,0,sizeof(point));
memset(num,0,sizeof(num));
memset(num1,0,sizeof(num1));
int i;
for(i=0;i<n;i++)
cin>>point[i].x>>point[i].y;
for(i=0;i<n;i++)
num[i]=i;
double minlen=dis();
memcpy(num1,num,sizeof(num));
while(next_permutation(num,num+n))
{
if(dis()<minlen)
{
memcpy(num1,num,sizeof(num));
minlen=dis();
}
}
cout<<"**********************************************************"<<endl;
cout<<"Network #"<<++k<<endl;
for(i=1;i<n;i++)
{
double d=sqrt((point[num1[i]].x-point[num1[i-1]].x)*(point[num1[i]].x-point[num1[i-1]].x)+(point[num1[i]].y-point[num1[i-1]].y)*(point[num1[i]].y-point[num1[i-1]].y));
printf("Cable requirement to connect (%d,%d) to (%d,%d) is %.2lf feet.\n",point[num1[i-1]].x,point[num1[i-1]].y,point[num1[i]].x,point[num1[i]].y,d+16);
//cout<<"Cable requirement to connect ("<<point[num1[i-1]].x<<","<<point[num1[i-1]].y<<") to ("<<point[num1[i]].x<<","<<point[num1[i]].y<<") is ";
//cout<<fixed<<setprecision(2)<<d+16<<" feet."<<endl;
}
printf("Number of feet of cable required is %.2lf.\n",minlen);
//cout<<"Number of feet of cable required is "<<fixed<<setprecision(2)<<minlen<<"."<<endl;
}
return 0;
} 因为第一个排列可能最优化,我忘记给他赋值了,找了好久的bug。

Getting in Line UVA 216的更多相关文章

  1. CDQ分治入门 + 例题 Arnooks's Defensive Line [Uva live 5871]

    CDQ分治入门 简介 CDQ分治是一种特别的分治方法,它由CDQ(陈丹琦)神犇于09国家集训队作业中首次提出,因此得名.CDQ分治属于分治的一种.它一般只能处理非强制在线的问题,除此之外这个算法作为某 ...

  2. UVA 216 - Getting in Line

    216 - Getting in Line Computer networking requires that the computers in the network be linked. This ...

  3. uva 216 Getting in Line 最短路,全排列暴力做法

    题目给出离散的点,要求求出一笔把所有点都连上的最短路径. 最多才8个点,果断用暴力求. 用next_permutation举出全排列,计算出路程,记录最短路径. 这题也可以用dfs回溯暴力,但是用最小 ...

  4. UVa 216 Getting in Line【枚举排列】

    题意:给出n个点的坐标,(2<=n<=8),现在要使得这n个点连通,问最小的距离的和 因为n很小,所以可以直接枚举这n个数的排列,算每一个排列的距离的和, 保留下距离和最小的那个排列就可以 ...

  5. Boxes in a Line UVA - 12657

      You have n boxes in a line on the table numbered 1...n from left to right. Your task is to simulat ...

  6. Boxes in a Line UVA - 12657 (双向链表)

    题目链接:https://vjudge.net/problem/UVA-12657 题目大意:输入n,m  代表有n个盒子 每个盒子最开始按1~n排成一行  m个操作, 1 x y  :把盒子x放到y ...

  7. 开源一套原创文本处理工具:Java+Bat脚本实现自动批量处理对账单工具

    原创/朱季谦 这款工具是笔者在2018年初开发完成的,时隔两载,偶然想起这款小工具,于是,决定将其开源,若有人需要做类似Java批处理实现整理文档的工具,可参考该工具逻辑思路来实现. 该工具是运行在w ...

  8. uva 11174 Stand in a Line

    // uva 11174 Stand in a Line // // 题目大意: // // 村子有n个村民,有多少种方法,使村民排成一条线 // 使得没有人站在他父亲的前面. // // 解题思路: ...

  9. UVA Getting in Line

    题目例如以下: Getting in Line  Computer networking requires that the computers in the network be linked. T ...

随机推荐

  1. SpringBoot 中使用 @Value 为 static 变量赋值

    原文:https://www.jianshu.com/p/ea477fc9abf7 例如: public class Utils { @Value("${test.host}") ...

  2. 从零開始学android&lt;使用嵌套布局实现计算器界面.十七.&gt;

    所谓的嵌套布局就是在一个文件里嵌套多个布局文件 <span style="font-size:18px;"> <LinearLayout android:layo ...

  3. Gerrit代码审查工具

    1 Gerrit简介 Gerrit,一种免费.开放源代码的代码审查软件,使用网页界面.利用网页浏览器,同一个团队的软件程序员,可以相互审阅彼此修改后的程序代码,决定是否能够提交,退回或者继续修改. 1 ...

  4. 几个常用linux命令语句

    几个常用linux命令 英文原文:What are the most useful "Swiss army knife" one-liners on Unix? 下面的这些内容是 ...

  5. Java NIO Pipe

    A Java NIO Pipe is a one-way data connection between two threads. A Pipe has a source channel and a ...

  6. 访问Oracle数据库的工具【unfinished】

    ylbtech-Oracle:访问Oracle数据库的工具 访问Oracle数据库的工具 1. SQL*PLUS返回顶部 1.0, 1.0.1, 之network\admin\tnsnames.ora ...

  7. [转]HTTPS网络流量解密方法探索系列(一)

    前言 分析网络流量总是绕不开HTTPS,因其广泛使用甚至是强制使用逐渐被大众熟知,在保证其安全的同时也提高了对流量进行研究的难度.目前解析HTTPS协议的文章很多,有很多不错的文章可以带着入门,老实说 ...

  8. Excel表数据导入Sql Server数据库中

    Excel表数据导入Sql Server数据库的方法很多,这里只是介绍了其中一种: 1.首先,我们要先在test数据库中新建一个my_test表,该表具有三个字段tid int类型, tname nv ...

  9. Ios开发之协议protocol

    Protocol是ios开发中的一个难点也是一个重点,要想使用好,或者理解好它,可能需要时间的累积.今天我们就通过一个例子来简单的看一下,怎么样使用protocol. 我们今天用的例子就是模拟电脑插入 ...

  10. 用eclipse 玩转cocos 2dx开发

    开始研究cocos2dx,mark一下这个的配置步骤 1 下载eclipse      2 下载android sdk,配置sdk路径,添加环境变量 3 安装adt 4 下载android ndk,配 ...