题目描述

给出一个长度为n的序列,求所有元素的和在[L,R]范围内的连续子序列的个数。

输入

第一行包含三个整数N,L和R,分别表示寿司盘数,满意度的下限和上限。
第二行包含N个整数Ai,表示小Z对寿司的满意度。
N≤100000,|Ai|≤100000,0≤L, R≤10^9

输出

仅一行,包含一个整数,表示共有多少种选择可以使得小Z的满意度之和
不低于L且不高于R。

样例输入

5 5 9
1 2 3 4 5

样例输出

6


题解

离散化+树状数组

把序列和转化为前缀相减,即选出满足$L\le sum[x]-sum[y]\le R$的$x>y$的数对个数。

那么我们枚举$x$,即可得到$y$的范围,要求的是以前的满足条件的$y$的个数。可以维护1到当前位置树状数组,在树状数组中查询个数,最后再把该数加入到树状数组中。由于数据范围大,因此需要离散化。

时间复杂度$O(n\log n)$

#include <cstdio>
#include <algorithm>
#define N 100010
#define now v + 1 , v + n + 2
using namespace std;
typedef long long ll;
ll sum[N] , v[N];
int f[N] , n;
inline void add(int x)
{
int i;
for(i = x ; i <= n + 1 ; i += i & -i) f[i] ++ ;
}
inline int query(int x)
{
int i , ans = 0;
for(i = x ; i ; i -= i & -i) ans += f[i];
return ans;
}
int main()
{
int i;
ll l , r , ans = 0;
scanf("%d%lld%lld" , &n , &l , &r);
for(i = 1 ; i <= n ; i ++ ) scanf("%lld" , &sum[i]) , sum[i] += sum[i - 1] , v[i] = sum[i];
sort(now);
for(i = 0 ; i <= n ; i ++ ) ans += query(upper_bound(now , sum[i] - l) - v - 1) - query(lower_bound(now , sum[i] - r) - v - 1) , add(lower_bound(now , sum[i]) - v);
printf("%lld\n" , ans);
return 0;
}

【bzoj4627】[BeiJing2016]回转寿司 离散化+树状数组的更多相关文章

  1. [BZOJ4627][BeiJing2016]回转寿司(线段树)

    从左到右处理,设到当前数R的前缀和为cnt[i],则以i为右端点的合法的区间左端点j必然是L<=cnt[i]-cnt[j-1]<=R,即cnt[i]-R<=cnt[j-1]<= ...

  2. BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组

    BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组 Description 酷爱日料的小Z经常光顾学校东门外的回转寿司店.在这里,一盘盘寿司通过传送带依次呈现在小Z眼前.不同的寿 ...

  3. CodeForces 540E - Infinite Inversions(离散化+树状数组)

    花了近5个小时,改的乱七八糟,终于A了. 一个无限数列,1,2,3,4,...,n....,给n个数对<i,j>把数列的i,j两个元素做交换.求交换后数列的逆序对数. 很容易想到离散化+树 ...

  4. Ultra-QuickSort(归并排序+离散化树状数组)

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 50517   Accepted: 18534 ...

  5. HDU 5862 Counting Intersections(离散化+树状数组)

    HDU 5862 Counting Intersections(离散化+树状数组) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 D ...

  6. poj-----Ultra-QuickSort(离散化+树状数组)

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 38258   Accepted: 13784 ...

  7. Code Forces 652D Nested Segments(离散化+树状数组)

     Nested Segments time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  8. hdu 3015 Disharmony Trees (离散化+树状数组)

    Disharmony Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  9. HDU 6318.Swaps and Inversions-求逆序对-线段树 or 归并排序 or 离散化+树状数组 (2018 Multi-University Training Contest 2 1010)

    6318.Swaps and Inversions 这个题就是找逆序对,然后逆序对数*min(x,y)就可以了. 官方题解:注意到逆序对=交换相邻需要交换的次数,那么输出 逆序对个数 即可. 求逆序对 ...

随机推荐

  1. 简单使用PuTTy登录centos虚拟机

    博主刚刚开始学习Linux,想通过写博客的方式加深对linux学习的记忆 使用虚拟机安装精简版的linux后发现窗口字体太小,于是就想着通过PuTTy登录的方式解决 简单安装linux后 将linux ...

  2. Ansible自动化配置详解

    第1章 Ansible基本概述 1.1 ansible是一个配置管理系统configuration management system, 你只需要可以使用ssh访问你的服务器或设备就行. 1.安装软件 ...

  3. MySql指令的执行顺序

    1:From 2:On 3:Join 4:Where 5:Group by 5.1:函数 6:Having 7:Select 8:Distinct 9:Order by

  4. ubuntu系統如何啟動root用戶登陸?

    之前分享過關於這個問題的文章,現在自己在分享一個關於這個問題的文章給大家.為了學習Linux,一氣之下把win10的換成了ubuntu的系統.安裝就不給大家介紹了(網上很多教程). 在我們安裝好之後, ...

  5. mybatis报错:查询一对多或多对多时只返回一条数据的问题

    问题: 使用映射文件实现查询一对多或多对多时只返回一条数据问题 解决方法: 导致这种情况出现的问题是因为两个表中的主键是一样所以出现了数据覆盖问题. 解决方式一:修改数据库表中的主键(这种方法比较麻烦 ...

  6. zookeeper相关知识与集群搭建

    Zookeeper Zookeeper相关概念 Zookeeper概述 Zookeeper是一个分布式协调服务的开源框架,主要用来解决分布式集群中应用系统的一致性问题. Zookeeper本质上是一个 ...

  7. mac phpstorm 破解方法

    方法参考如下链接: 来源:http://www.cnblogs.com/zyliang/p/6148960.html

  8. Python学习:for 循环 与 range()函数

    for 循环   For … in 语句是另一种循环语句,其特点是会在一系列对象上进行迭代(Iterates),即它会遍历序列中的每一个项目 注意:  1.else 部分是可选的.当循环中包含它时,它 ...

  9. 网站apache环境S2-057漏洞 利用POC 远程执行命令漏洞复现

    S2-057漏洞,于2018年8月22日被曝出,该Struts2 057漏洞存在远程执行系统的命令,尤其使用linux系统,apache环境,影响范围较大,危害性较高,如果被攻击者利用直接提权到服务器 ...

  10. 勾股数--Python

    勾股数:勾股数又名毕氏三元数 .勾股数就是可以构成一个直角三角形三边的一组正整数.勾股定理:直角三角形两条直角边a.b的平方和等于斜边c的平方(a²+b²=c²) 要求:输出1000以内的勾股数 fr ...