基于OMAPL138的Linux字符驱动_GPIO驱动AD9833(二)之cdev与read、write

0. 导语

在上一篇博客里面,基于OMAPL138的字符驱动_GPIO驱动AD9833(一)之ioctl 中使用#include <linux/miscdevice.h>中的miscdevice机制,在呢篇博客中使用宋宝华的Linux驱动设备中提供的cdev机制完成注册,

根据参考文献[1]中所说:

misc设备其实也是字符设备,主不过misc设备驱动在字符设备的基础上又进行了一次封装,使用户可以更方便的使用。

在本次实验中确实印证了使用cdev比较复杂,且加载ko模块驱动之后还需要查看设备号,手动mknod节点,而且在卸载驱动的时候也是非常繁琐的,但在这里本着学习的目的也进行了实验,后续的开发会使用miscdevice机制而不使用cdev机制

本次实验主要针对字符设备的:

  • cdev注册设备
  • read函数的使用
  • write函数的使用

在上一篇博客基于OMAPL138的字符驱动_GPIO驱动AD9833(一)之ioctl,只能用ioctl函数进行一个字节的幻数进行指令通信,但无法传输类似于设置频率指令。如果传递这样的参数,只需要使用write和read函数完成数据的传递。

1. cdev的使用

cdev的定义

cdev的定义信息包含在#include <linux/cdev.h>头文件中,需要使用cdev当然要定义cdev的结构体了,我们将cdev的信息定义在了我们的设备定义struct ad9833下。

AD9833 结构体定义:

struct ad9833_t {

	struct ad9833_hw_t hw;
struct ad9833_t *self;
enum ad9833_wavetype_t wave_type; struct cdev cdev;
unsigned char mem[ AD9833_SIZE ]; unsigned int delay; void (*write_reg) ( AD9833 *self, unsigned int reg_value);
void (*init_device) ( AD9833 *self );
void (*set_wave_freq)( AD9833 *self , unsigned long freqs_data);
void (*set_wave_type)( AD9833 *self, enum ad9833_wavetype_t wave_type );
void (*set_wave_phase)( AD9833 *self, unsigned int phase );
void (*set_wave_para)( AD9833 *self, unsigned long freqs_data, unsigned int phase, enum ad9833_wavetype_t wave_type );
};

结构体内的struct cdev cdev就为我们使用的cdev目的就是向Linux内核申请自己的位置。

创建主设备号和次设备号

使用cdev需要向内核申请一个空间,则需要有一个主设备号提交给内核,我们可以使用Linux内核提供的一套宏函数来进行设备好的申请。通常的做法在设备init的函数里面。

MK_MAJOR( major, minor ); major 主设备号和 minor 次设备号,同款型的第二个设备次设备就是 2 以此类推。

#define				AD9833_MAJOR				230
dev_t devno;
devno = MKDEV( AD9833_MAJOR, 0 );

这个号码在我们mknod的时候比如,#mknod /dev/AD9833-ADI c 230 0 这个地方就会用到了。

cdev注册

int register_chrdev_region( dev_t from, unsigned int size, const char *name );

int alloc_chrdev_region( dev_t *dev, unsigned baseminor, unsigned count );

两个函数完成注册,第一个用于已知设备号的情况下,alloc那个用于未知设备号的,他会帮你分配设备号码。这里我们当然使用register_chrdev_region,里面第一个参数dev_t from就是我们上一个定义的dev_t devno = MKDEV(..)那个。

cdev初始化程序

dev_t	devno;
static int __init ad9833_dev_init( void )
{
int i,ret;
int index_minor = 0;
int mk_major; /*
* cdev alloc and release device code.
* */
devno = MKDEV( ad9833_major, index_minor );
mk_major = MKDEV(ad9833_major, 0);
if( ad9833_major ) {
ret = register_chrdev_region( devno, 1, DRV_NAME );
}else {
ret = alloc_chrdev_region( &devno, 0, 1, DRV_NAME );
ad9833_major = MAJOR(devno);
}
if( ret < 0 ) {
printk(DRV_NAME "\t cdev alloc space failed.\n");
return ret;
}
/*
* AD9833 new device
* */
printk( DRV_NAME "\tApply memory for AD9833.\n" );
ad9833 = ad9833_dev_new();
if( !ad9833 ) {
ret = -ENOMEM;
printk(DRV_NAME "\tad9833 new device failed!\n" );
goto fail_malloc;
} /*
* AD9833 init gpios.
* */
printk( DRV_NAME "\tInititial GPIO\n" ); for ( i = 0; i < 3; i ++ ) {
ret = gpio_request( ad9833_gpios[i], "AD9833 GPIO" );
if( ret ) {
printk("\t%s: request gpio %d for AD9833 failed, ret = %d\n", DRV_NAME,ad9833_gpios[i],ret);
return ret;
}else {
printk("\t%s: request gpio %d for AD9833 set succussful, ret = %d\n", DRV_NAME,ad9833_gpios[i],ret);
}
gpio_direction_output( ad9833_gpios[i],1 );
gpio_set_value( ad9833_gpios[i],0 );
} /*
* cdev init.
* */
cdev_init( &ad9833->cdev, &ad9833_fops );
ad9833->cdev.owner = THIS_MODULE;
ret = cdev_add( &ad9833->cdev, mk_major,1 );
if( ret ) {
printk( KERN_NOTICE "Error %d adding ad9833 %d", ret, 1 );
return ret;
} //ret = misc_register( &ad9833_miscdev );
printk( DRV_NAME "\tinitialized\n" );
return 0; fail_malloc:
unregister_chrdev_region( mk_major,1 );
return ret; }

cdev的释放设备

rmmod之后设备要进行释放,这个地方必须正确释放,否则我们下载安装模块的时候只能重启。

void unregister_chrdev_region( dev_t from, unsigned count ) ,进行设备的释放。


static void __exit ad9833_dev_exit( void )
{
int i;
for( i = 0; i < 3; i++) {
gpio_free( ad9833_gpios[i] );
}
//misc_deregister( &ad9833_miscdev );
unregister_chrdev_region( devno,1 ); }

cdev设备的使命就完成了。

2. file read write操作

需要在file_operations结构体里面指定read和write函数:

file_operations结构体参数:

static struct file_operations ad9833_fops = {

		.owner				=	THIS_MODULE,
.read = ad9833_driver_read,
.write = ad9833_driver_write,
.unlocked_ioctl = ad9833_ioctl,
};

这里面ad9833_driver_read和ad9833_driver_write函数就指定了读写函数。这里有个对应问题,正常思维是用户的write函数对应内核驱动的read函数,用户的read函数对应内核驱动的write函数,但这里面,用户的read函数对应的是内核的read函数,用户的write函数也是对应内核的write函数。所以,当用户写应用程序write数据的时候,我们应该在ad9833_write函数里面读取这个数据处理,当对方read的时候,我们需要在ad9833_read里面进行处理read事件。

read函数

static ssize_t
ad9833_driver_read( struct file *filp, const char __user *buffer, size_t size, loff_t *f_pos )
{
unsigned long p = *f_pos;
unsigned int count = size;
int ret = 0; if ( p >= AD9833_SIZE )
return 0;
if ( count > AD9833_SIZE - p )
count = AD9833_SIZE - p;
if ( copy_to_user( buffer, ad9833->mem + p, count) ) {
ret = -EFAULT;
}else {
*f_pos += count;
ret = count;
printk( DRV_NAME "\tread %u bytes from %lu\n", count, p );
}
return ret;
}

这里有个特殊的处理,copy_to_user函数,对于用户传递进来的指针,对其直接进行读取写入很危险的,所以这里使用copy_to_user把数据传递给用户,比较安全。

write函数

static ssize_t
ad9833_driver_write( struct file *filp, const char __user *buffer, size_t size, loff_t *f_pos )
{
unsigned long p = *f_pos;
unsigned int count = size;
int ret = 0; if ( p >= AD9833_SIZE )
return 0;
if ( count > AD9833_SIZE - p )
count = AD9833_SIZE - p; memset( ad9833->mem,0, AD9833_SIZE ); if ( copy_from_user( ad9833->mem + p, buffer, count) ) {
ret = -EFAULT;
}else {
*f_pos += count;
ret = count;
printk( DRV_NAME "\twrite %u bytes from %lu\n", count, p );
printk( DRV_NAME "\tRecv: %s \n", ad9833->mem + p );
printk( DRV_NAME "\tSet freq is: %d \n", simple_strtol(ad9833->mem + p,"str",0) );
ad9833->set_wave_freq(ad9833, simple_strtol(ad9833->mem + p,"str",0) );
}
return ret;
}

同理,直接操作用户传递进来的指针,很危险的,在write函数里copy_from_user进行数据转移交换,完成处理。这个write函数里面,用户通过write函数向驱动写入指令信息,然后解析出来,得到频率控制字,完成运算。

运行程序

把内核文件uImage拷贝到目标板子,把ad9833.ko文件也拷贝到目标板。

1) 加载驱动

#insmod ad9833.ko

2) 查看驱动挂载情况

#cat /proc/devices

3) 制作设备节点

#mknod /dev/AD9833-ADI c 230 0

就可以看见/dev/AD9833-ADI的节点了。

4) 运行测试程序

/*
CROSS=arm-none-linux-gnueabi-
all: ad9833_test
ad9833_test: ad9833_test.c
$(CROSS)gcc -o ad9833_test.o ad9833_test.c -static
clean:
@rm -rf ad9833_test *.o
* */ #include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h> #define AD9833_MAGIC 'k'
#define CMD_TYPE_SIN _IO( AD9833_MAGIC, 0)
#define CMD_TYPE_TRI _IO( AD9833_MAGIC, 1)
#define CMD_TYPE_SQE _IO( AD9833_MAGIC, 2) const char dev_path[]="/dev/AD9833-ADI"; int main(int argc , char *argv[])
{ int fd = -1, i = 0; printf("ad9833 test program run....\n"); fd = open(dev_path, O_RDWR|O_NDELAY); // 打开设备
if (fd < 0) {
printf("Can't open /dev/AD9833-ADI\n");
return -1;
} printf("open device.\n"); if( strcmp(argv[1],"1") == 0 ) {
ioctl(fd, CMD_TYPE_SIN, 5);
printf("argc = %d,sine wave = %s \n", CMD_TYPE_SIN, argv[1]);
}else if( strcmp(argv[1],"2") == 0 ) {
ioctl(fd, CMD_TYPE_TRI, 1);
printf("argc = %d,tri wave = %s \n", CMD_TYPE_TRI,argv[1]);
}else{
ioctl(fd, CMD_TYPE_SQE, 1);
printf("argc = %d,sqe wave = %s \n", CMD_TYPE_SQE, argv[1]);
}
write(fd, argv[2], strlen(argv[2])); printf("argc = %d\n", argc);
close(fd);
return 0;
}

编译成.o文件运行:

#mknod /dev/AD9833-ADI c 230 0

得到效果。

源代码下载

链接: https://pan.baidu.com/s/1lioLal_mvnbONFLQCBRF7w 密码: 5ptq

参考文献

[1] xiaobu1990, linux 字符设备和misc设备, 2014年10月15日

基于OMAPL138的Linux字符驱动_GPIO驱动AD9833(二)之cdev与read、write的更多相关文章

  1. 基于OMAPL138的Linux字符驱动_GPIO驱动AD9833(一)之miscdevice和ioctl

    基于OMAPL138的Linux字符驱动_GPIO驱动AD9833(一)之miscdevice和ioctl 0. 导语 在嵌入式的道路上寻寻觅觅很久,进入嵌入式这个行业也有几年的时间了,从2011年后 ...

  2. 基于OMAPL138的字符驱动_GPIO驱动AD9833(三)之中断申请IRQ

    基于OMAPL138的字符驱动_GPIO驱动AD9833(三)之中断申请IRQ 0. 导语 学习进入到了下一个阶段,还是以AD9833为例,这次学习是向设备申请中断,实现触发,在未来很多场景,比如做用 ...

  3. 基于tiny4412的Linux内核移植 -- MMA7660驱动移植(九-2)

    作者信息 作者: 彭东林 邮箱:pengdonglin137@163.com QQ:405728433 平台简介 开发板:tiny4412ADK + S700 + 4GB Flash 要移植的内核版本 ...

  4. 基于tiny4412的Linux内核移植 -- MMA7660驱动移植(九)

    作者信息 作者: 彭东林 邮箱:pengdonglin137@163.com QQ:405728433 平台简介 开发板:tiny4412ADK + S700 + 4GB Flash 要移植的内核版本 ...

  5. 基于tiny4412的Linux内核移植 -- eMMC驱动移植(六)

    作者信息 作者: 彭东林 邮箱:pengdonglin137@163.com QQ:405728433 平台简介 开发板:tiny4412ADK + S700 + 4GB Flash 要移植的内核版本 ...

  6. Linux内核驱动学习(三)字符型设备驱动之初体验

    Linux字符型设备驱动之初体验 文章目录 Linux字符型设备驱动之初体验 前言 框架 字符型设备 程序实现 cdev kobj owner file_operations dev_t 设备注册过程 ...

  7. 深入理解Linux字符设备驱动

    文章从上层应用访问字符设备驱动开始,一步步地深入分析Linux字符设备的软件层次.组成框架和交互.如何编写驱动.设备文件的创建和mdev原理,对Linux字符设备驱动有全面的讲解.本文整合之前发表的& ...

  8. Linux字符设备驱动实例—globalmem驱动

    1.globalmem虚拟设备实例 globalmem为“全局内存”的意思,在globalmem字符设备中会分配一片大小为GLOBALMEM_SIZE(4KB)的内存空间,并在驱动中提供对这片内存的读 ...

  9. Linux字符设备驱动基本结构

    1.Linux字符设备驱动的基本结构 Linux系统下具有三种设备,分别是字符设备.块设备和网络设备,Linux下的字符设备是指只能一个字节一个字节读写的设备,不能随机读取设备内存中某一数据,读取数据 ...

随机推荐

  1. 转:Windows版本判断大全

    /***************************************************************************** Operating System Vers ...

  2. shell定时采集数据到HDFS

    上线的网站每天都会产生日志数据.假如有这样的需求:要求在凌晨 24 点开始操作前一天产生的日志文件,准实时上传至 HDFS 集群上. 该如何实现?实现后能否实现周期性上传需求?如何定时? Linux ...

  3. 点触科技安全验证新模式与逐浪CMS3.9.3新功能预览

    是颠覆传统字符验证码的新一代验证码系统.用户通过点击.拖动等有趣方式即可完成验证,防止机器攻击, 应用在注册.登录.数据访问保护.黄牛刷单等场景. 只要在逐浪CMS后台-系统-配置 ,进行简单的配置, ...

  4. PHP腾讯与百度坐标转换

    function coordinate_switch($a,$b){//百度转腾讯坐标转换 $a = Latitude , $b = Longitude $x = (double)$b - 0.006 ...

  5. 一张图看懂微软Power BI系列组件

    一.Power BI简介 Power BI是微软最新的商业智能(BI)概念,它包含了一系列的组件和工具.话不多说,直接上图吧: Power BI的核心理念就是让我们用户不需要强大的技术背景,只需要掌握 ...

  6. May 29th 2017 Week 22nd Monday

    I figure life is a gift and I don't intend on wasting it. 我觉得生命是一份礼物,我不想浪费它. It seems that I didn't ...

  7. IntelliJ IDEA 快速搭建 Spring MVC环境

    IntelliJ在业界被公认为最好的java开发工具之一,尤其在智能代码助手.代码自动提示.重构.J2EE支持.Ant.JUnit.CVS整合.代码审查. 创新的GUI设计等方面的功能可以说是超常的. ...

  8. Spring多个版本源码地址分享

    源码地址为:http://repo.spring.io/simple/libs-release-local/org/springframework/spring/,以供研究源码的朋友. 我看了好几本关 ...

  9. Android学习笔记_58_清除手机应用程序缓存

    通过查看手机设置(setting)源代码,发现它里面获取应用大小和缓存大小是通过PackageManager里面的getPackageSizeInfo方法.然而此方法时私有的,因此通过反射调用此方法. ...

  10. linux 学习(三) php相关

    五 php相关 配置文件位置 /etc/apache2/apache2.conf 1禁止列举目录 sudo vi /etc/apache2/sites-enabled/000-default 删除Op ...