poj 2154 Color——带优化的置换
题目:http://poj.org/problem?id=2154
置换的第二道题!
需要优化!式子是ans=∑n^gcd(i,n)/n (i∈1~n),可以枚举gcd=g,则有phi( n/g )个数与n的gcd是g。
g是n的约数,成对出现,可以O(sqrt(n))枚举。用不断 /p 的log(n)做法求单个的phi。(不用专门看p是不是质数,此处可以保证一定是质数)
注意pw里的x传进去要先%mod!!!因为它是1e9级别的,一开始(x*=x)%=mod的时候会爆。
如果把n开成long long,这里传进去long long,就没事了。但会TLE!!!所以还是先取模。
注意各种有除法的地方都不能随时取模。如phi,和ans/n的除法的处理。
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
int T,mod,n;
ll ans;
int phi(int a)
{
int ret=a;
for(int i=;i*i<=a;i++)
if(a%i==)
{
ret=ret/i*(i-);
// ret-=ret/i;//这样也行!
while(a%i==)a/=i;
}
// if(a!=1)ret-=ret/a;
if(a!=)ret=ret/a*(a-);//剩下一个质因数
return ret%mod;//不要中途%mod,有除法!
}
ll pw(int x,int k)
{
ll ret=;x%=mod;/////x是1e9的,但long long会爆!
while(k){if(k&)(ret*=x)%=mod;(x*=x)%=mod;k>>=;}return ret;
}
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&mod);ans=;
for(int i=;i*i<=n;i++) //i是gcd的话,n/i也是gcd!
{
if(n%i)continue;
(ans+=pw(n,i-)*phi(n/i))%=mod;
if(i*i!=n)(ans+=pw(n,n/i-)*phi(i))%=mod;
}
printf("%lld\n",ans);//不要这里/n,模意义下不行。让上面的pw少乘一个n
}
return ;
}
poj 2154 Color——带优化的置换的更多相关文章
- [ACM] POJ 2154 Color (Polya计数优化,欧拉函数)
Color Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7630 Accepted: 2507 Description ...
- poj 2154 Color(polya计数 + 欧拉函数优化)
http://poj.org/problem?id=2154 大致题意:由n个珠子,n种颜色,组成一个项链.要求不同的项链数目.旋转后一样的属于同一种.结果模p. n个珠子应该有n种旋转置换.每种置换 ...
- POJ 2154 color (polya + 欧拉优化)
Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). You ...
- poj 2154 Color 欧拉函数优化的ploya计数
枚举位移肯定超时,对于一个位移i.我们须要的是它的循环个数,也就是gcd(i,n),gcd(i,n)个数肯定不会非常多,由于等价于n的约数的个数. 所以我们枚举n的约数.对于一个约数k,也就是循环个数 ...
- 组合数学 - 波利亚定理 --- poj : 2154 Color
Color Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7873 Accepted: 2565 Description ...
- poj 2154 Color < 组合数学+数论>
链接:http://poj.org/problem?id=2154 题意:给出两个整数 N 和 P,表示 N 个珠子,N种颜色,要求不同的项链数, 结果 %p ~ 思路: 利用polya定理解~定理内 ...
- poj 2154 Color
这是道标准的数论优化的polya题.卡时卡的很紧,需要用int才能过.程序中一定要注意控制不爆int!!!我因为爆intWA了好久=_=…… 题目简洁明了,就是求 sigma n^gcd(i,n):但 ...
- POJ 2154 Color [Polya 数论]
和上题一样,只考虑旋转等价,只不过颜色和珠子$1e9$ 一样的式子 $\sum\limits_{i=1}^n m^{gcd(i,n)}$ 然后按$gcd$分类,枚举$n$的约数 如果这个也化不出来我莫 ...
- POJ 2154 Color ——Burnside引理
[题目分析] 数据范围有些大. 然后遍求欧拉函数,遍求和就好了,注意取模. [代码] #include <cstdio> #include <cstring> #include ...
随机推荐
- linux音频 DAPM之二:audio paths与dapm kcontrol
转:https://blog.csdn.net/wh_19910525/article/details/12749293 在用alsa_amixer controls时,除了我们之前提到的snd_so ...
- Linux的压缩命令(tar,gzip,zip)
打包和压缩.打包是指将一大堆文件或目录变成一个总的文件:压缩则是将一个大的文件通过一些压缩算法变成一个小文件. 这源于Linux中很多压缩程序只能针对一个文件进行压缩,这样当你想要压缩一大堆文件时,你 ...
- Android编译系统简要介绍【转】
本文转载自:http://blog.csdn.net/luoshengyang/article/details/18466779 在Android源码环境中,我们开发好一个模块后,再写一个Androi ...
- SpringBoot Mybatis keyProperty和useGeneratedKeys的作用
在使用mybatis时,常常会出现这种需求: 当主键是自增的情况下,添加一条记录的同时,其主键是不能被使用的(为空),但是有时我们需要该主键,这时我们该如何处理呢?这时我们只需要在其对应xml中加入以 ...
- Linux挂载第二块硬盘操作方法
远程SSH登录上Centos服务器后,进行如下操作 提醒:挂载操作会清空数据,请确认挂载盘无数据或者未使用 第一步:列出所有已挂载磁盘 命令: disk -h [root@gluster_node1 ...
- Hessian与Spring整合
1.服务端与Spring的整合 1.1:web.xml中配置控制器 <servlet> <servlet-name>hessian</servlet-name> & ...
- MySQLdump导出sql脚本
1.问题描述 通过图形化工具,在查询窗口用select语句按条件查询出所需结果,然后用“导出向导”把查询结果导成sql文件,但是导出来的sql语句不全,没有表名.字段名. 通过图形化工具,试了好多次都 ...
- Centos7 搭建DNS服务器与原理配置详解
在搭建我们自己DNS服务器之前,先必须了解下DNS服务器的作用和原理. DNS是在互联网上进行域名解析到对应IP地址的服务器,保存互联网上所有的IP与域名的对应信息,然后将我们对网址的访问,解析成IP ...
- QT QFtp使用实例 从FTP下载一个文件
1. ftp://ftp.denx.de/pub/u-boot/lowboot-1.0.0.patch.gz 下载文件 FtpGet.h #ifndef FTPGET_H #define FTPGE ...
- Codeforces Beta Round #27 (Codeforces format, Div. 2) E. Number With The Given Amount Of Divisors 反素数
E. Number With The Given Amount Of Divisors time limit per test 2 seconds memory limit per test 256 ...