拉格朗日乘数法 和 KTT条件
预备知识
令 \(X\) 表示一个变量组(向量) \((x_1, x_2, \cdots, x_n)\)
考虑一个处处可导的函数 \(f(X)\), 为了方便描述, 这里以二元函数为例
对于微分, 考虑在初始点处固定x移动y产生的变化量, 是和先将x移动dx,然后固定x移动y产生的变化量是相等的
那么有全微分公式 \(df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy\)
定义 \(\nabla f(x, y)\) 为点 \((x, y)\) 上的梯度方向向量(平面上的这些向量构成一个向量场)
梯度方向向量指向让\(df\)最大的方向. 也即使 \((\frac{\partial f}{\partial x},\frac{\partial f}{\partial y})\cdot(dx, dy)\) 最大的 \((dx, dy)\)
要投影最长, 同向自然最优, 因此偏导组成的向量\((\frac{\partial f}{\partial x},\frac{\partial f}{\partial y})\)就是梯度方向向量
同理考虑 \(df=0\) 的方向(等高线), 投影为0, 这说明等高线的方向与梯度的方向垂直
高维的情况同理
拉格朗日乘数法
考虑这么一个问题:
\(~~\max f(X)\)
\(s.t.~~g_k(X) = 0, \forall k \in [1,m]\)
考虑 \(f(X)\) 在什么时候取得局部极大值:
考虑往某个方向微移, 若满足这样移动不影响任何一个 \(dg\), 那么必须要有 \(df=0\)
否则如果存在 \(df\neq 0\) , 必然 \(<0, >0\) 都会出现 (考虑反向微移), 就不是局部极值点了
考虑把 \(dx_1, dx_2,\cdots dx_n\) 这种东西看作变量
把 \(\nabla g_1, \nabla g_2, \cdots \nabla g_m\) 以及 \(\nabla f\) 都横着放在矩阵里看作若干个方程
之前的条件就等价于: 前 \(m\) 条方程蕴含了最后一条方程
也即 \(\nabla f\) 可以被 \(\nabla g_1\cdots \nabla g_m\) 线性表示
令\(L(X,\Lambda) = f(X) + \sum_{k=1}^m \lambda_k g_k(X)\)
我们只需求解 \(\nabla L(X,\Lambda) = 0\) 即可
这样我们对 \(n\) 个变量分别求偏导即可得到 \(n\) 个方程
加上 \(g\) 的 \(m\) 个方程 (恰好是对\(\lambda\)分别求偏导)
总共 \(n+m\) 个方程.
KKT条件
考虑这么一个问题:
\(~~\max f(X)\)
\(s.t.~~h_k(X)\ge 0, \forall k \in [1, m]\)
令 \(L(X, \Lambda) = f(x) + \sum_{k=1}^m \lambda_k h_k(X), \lambda_k \ge 0\)
因为\(\lambda\ge 0, h\ge 0\), 所以 \(f(X) = \min_{\Lambda\ge 0} L(X,\Lambda)\)
原问题等价于 \(\max_X \min_{\Lambda\ge 0} L(X,\Lambda)\)
考虑对偶问题 \(\min_{\Lambda\ge 0}\max_X L(X, \Lambda)\)
显然\(L(X, \Lambda)\ge f(X)\), 则有 \(\max_X L(X, \Lambda) \ge \max f(X)\)
对偶问题对所有的这些值取 \(\min\), 仍然是 \(\ge \max f(X)\)
设原问题极值点在 \(X^{*}\), 对偶问题极值点在 \(\Lambda^{*}\)
则有 \(\max_X L(X, \Lambda^{*}) \ge f(X^{*}) + \sum_{k=1}^m \lambda^{*}_k h_k(X) \ge f(X^{*})\)
假设强对偶性满足, 上面的不等号都要变成等号
限制了 : \(\lambda^{*}_k h_k(X) = 0\) 以及 \(\nabla L(X^{*}, \Lambda^{*})=0\)
结论好记: KTT条件只比拉格朗日乘数多了两个限制, \(\lambda_k h_k(X) = 0, \lambda_k\ge 0\)
在哪些问题上满足强对偶性, 详见wiki
自己姿势水平不够, 这个坑可能不那么快能填上了
另外, 考虑如果在原问题加上等式限制, 就再补上拉格朗日乘数即可, 不难发现, 不影响这里的证明
拉格朗日乘数法 和 KTT条件的更多相关文章
- [Math & Algorithm] 拉格朗日乘数法
拉格朗日乘数法(Lagrange Multiplier Method)之前听数学老师授课的时候就是一知半解,现在越发感觉拉格朗日乘数法应用的广泛性,所以特意抽时间学习了麻省理工学院的在线数学课程.新学 ...
- 《University Calculus》-chaper12-多元函数-拉格朗日乘数法
求解条件极值的方法:拉格朗日乘数法 基于对多元函数极值方法的了解,再具体的问题中我们发现这样一个问题,在求解f(x,y,z)的极值的时候,我们需要极值点落在g(x,y,z)上这种对极值点有约束条件,通 ...
- CodeForces - 813C The Tag Game(拉格朗日乘数法,限制条件求最值)
[传送门]http://codeforces.com/problemset/problem/813/C [题意]给定整数a,b,c,s,求使得 xa yb zc值最大的实数 x,y,z , 其中x ...
- bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)
题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行 ...
- ML(附录4)——拉格朗日乘数法
基本的拉格朗日乘子法(又称为拉格朗日乘数法),就是求函数 f(x1,x2,...) 在 g(x1,x2,...)=C 的约束条件下的极值的方法.其主要思想是引入一个新的参数 λ (即拉格朗日乘子),将 ...
- CodeChef TWOROADS(计算几何+拉格朗日乘数法)
题面 传送门 简要题意:给出\(n\)个点,请求出两条直线,并最小化每个点到离它最近的那条直线的距离的平方和,\(n\leq 100\) orz Shinbokuow 前置芝士 给出\(n\)个点,请 ...
- BZOJ3775: 点和直线(计算几何+拉格朗日乘数法)
题面 传送门 题解 劲啊-- 没有和\(Claris\)一样推,用了类似于\(Shinbokuow\)推已知点求最短直线的方法,结果\(WA\)了好几个小时,拿\(Claris\)代码拍了几个小时都没 ...
- BZOJ2876 [Noi2012]骑行川藏 【拉格朗日乘数法】
题目链接 BZOJ 题解 拉格朗日乘数法 拉格朗日乘数法用以求多元函数在约束下的极值 我们设多元函数\(f(x_1,x_2,x_3,\dots,x_n)\) 以及限制\(g(x_1,x_2,x_3,\ ...
- Wannafly模拟赛2 B river(拉格朗日乘数法)
题目 https://www.nowcoder.com/acm/contest/4/B题意 有n条南北流向的河并列排着,水流速度是v,现在你需要从西岸游到东岸,总共T个时间,你的游泳速度是u,问东岸的 ...
随机推荐
- idea 常用设置
1.修改为Eclipse快捷键 File -> Settings -> Keymap => Keymaps改为 Eclipse copy 2.显示行号: File -> S ...
- php 使用GD库压缩图片,添加文字图片水印
先上一个工具类,提供了压缩,添加文字.图片水印等方法: image.class.php <?php class Image { private $info; private $image; pu ...
- Linux初步——常用简单命令
散乱的记录,目前是边学边用,以后有机会再整理 curl命令 发起一个HTTP请求,如:curl "http://www.baidu.com" 加上-I选项查看HTTP协议头的信息, ...
- VSCode 前端必备插件
VSCode 前端必备插件 Debugger for Chrome 让 vscode 映射 chrome 的 debug功能,静态页面都可以用 vscode 来打断点调试 { "versio ...
- Ubuntu 常见错误及解决方法——长期不定时更新
1. 修复 /etc/sudoers 文件损坏导致不能使用 sudo 命令 这是之前错误地编辑了 /etc/sudoers 这个文件导致的,因此撤销编辑即可,但由于已经不能使用 sudo 命令,因此不 ...
- static 关键字解析(转)
static关键字解析 Java中的static关键字解析 static关键字是很多朋友在编写代码和阅读代码时碰到的比较难以理解的一个关键字,也是各大公司的面试官喜欢在面试时问到的知识点之一.下面 ...
- [leetcode-655-Print Binary Tree]
Print a binary tree in an m*n 2D string array following these rules: The row number m should be equa ...
- python进阶训练
1.列表,字典,集合解析 from random import randint #列表解析,选出大于0的元素 data=[randint(-10,10)for i in range(10)] resu ...
- POJ 1463 Strategic game(二分图最大匹配)
Description Bob enjoys playing computer games, especially strategic games, but sometimes he cannot f ...
- URAL 1741 Communication Fiend(最短路径)
Description Kolya has returned from a summer camp and now he's a real communication fiend. He spends ...