BZOJ1951:[SDOI2010]古代猪文(Lucas,CRT)
Description
Input
Output
Sample Input
Sample Output
HINT
10%的数据中,1 <= N <= 50;
20%的数据中,1 <= N <= 1000;
40%的数据中,1 <= N <= 100000;
100%的数据中,1 <= G <= 1000000000,1 <= N <= 1000000000。
数论好题。因为用的东西太TM多了
首先可以明确题目让我们求解的式子为$G^{\sum_{d|n} C_n^d}~mod~p$
因为p是质数,所以根据费马小定理可得
$\begin{aligned} \displaystyle ans &= G^{\sum_{d|n} C_n^d}~mod~p \\ &=G^{\sum_{d|n} C_n^d~mod~(p-1)}~mod~p \end{aligned}$
所以我们现在不需要管G了,只需要把指数求出来就好了。
然而$p-1$并不是一个质数,该怎么用Lucas求解呢?
我们可以将$p-1$质因数分解,成$2,3,4679,35617$,然后对这四个质因数分别Lucas,然后把这四个列成一个同余方程组CRT解出来即可。
exLucas应该也是可以的不过我还没学会
注意特判G=p的情况
#include<iostream>
#include<cstring>
#include<cstdio>
#define N (100000)
#define MOD (999911659)
using namespace std; long long m[]={,,,,};
long long n,g,a[N];
long long fac[N],inv[N],facInv[N]; long long C(long long n,long long m,long long p)
{
if (m>n) return ;
return fac[n]*facInv[m]%p*facInv[n-m]%p;
} long long Lucas(long long n,long long m,long long p)
{
if (n<m) return ;
long long sum=;
for (; m; n/=p,m/=p)
sum=sum*C(n%p,m%p,p)%p;
return sum;
} void Init(long long p)
{
inv[]=; fac[]=facInv[]=;
for (int i=; i<=p; ++i)
{
if (i!=) inv[i]=(p-p/i)*inv[p%i]%p;
fac[i]=fac[i-]*i%p;
facInv[i]=facInv[i-]*inv[i]%p;
}
} void exgcd(long long a,long long b,long long &d,long long &x,long long &y)
{
if (!b){d=a; x=; y=; return;}
exgcd(b,a%b,d,y,x); y-=x*(a/b);
} long long CRT()
{
long long M=m[],A=a[],d,x,y,t;
for (int i=; i<=; ++i)
{
exgcd(M,m[i],d,x,y);
if ((a[i]-A)%d) return -;
x*=(a[i]-A)/d; t=m[i]/d; x=(x%t+t)%t;
A=M*x+A; M=M/d*m[i]; A%=M;
}
A=(A%M+M)%M;
return A;
} long long Qpow(long long a,long long b,long long p)
{
long long ans=,base=a;
while (b!=)
{
if (b&!=)
ans=(ans*base)%p;
base=(base*base)%p;
b>>=;
}
return ans;
} int main()
{
scanf("%lld%lld",&n,&g);
if (g==MOD)
{
printf("");
return ;
}
for (int i=; i<=; ++i)
{
Init(m[i]);
for (int j=; j*j<=n; ++j)
{
if (n%j) continue;
(a[i]+=Lucas(n,j,m[i]))%=m[i];
if (j*j==n) continue;
(a[i]+=Lucas(n,n/j,m[i]))%=m[i];
}
}
printf("%lld",Qpow(g,CRT(),MOD));
}
BZOJ1951:[SDOI2010]古代猪文(Lucas,CRT)的更多相关文章
- P2480 [SDOI2010]古代猪文 Lucas+CRT合并
\(\color{#0066ff}{ 题目描述 }\) 猪王国的文明源远流长,博大精深. iPig在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为N.当然,一种语言如果字数很多,字典也相应会 ...
- 【BZOJ1951】古代猪文(CRT,卢卡斯定理)
[BZOJ1951]古代猪文(CRT,卢卡斯定理) 题面 BZOJ 洛谷 题解 要求什么很显然吧... \[Ans=G^{\sum_{k|N}{C_N^k}}\] 给定的模数是一个质数,要求解的东西相 ...
- 【BZOJ1951】[Sdoi2010]古代猪文 Lucas定理+CRT
[BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有 ...
- BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2194 Solved: 919[Submit][Status] ...
- [bzoj1951] [Sdoi2010]古代猪文 费马小定理+Lucas定理+CRT
Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...
- BZOJ1951 [Sdoi2010]古代猪文 【费马小定理 + Lucas定理 + 中国剩余定理 + 逆元递推 + 扩展欧几里得】
题目 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那 ...
- BZOJ1951[SDOI2010]古代猪文
Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...
- bzoj千题计划323:bzoj1951: [Sdoi2010]古代猪文(Lucas+CRT+欧拉定理)
https://www.lydsy.com/JudgeOnline/problem.php?id=1951 先欧拉降幂 然后模数质因数分解 分别计算组合数的结果,中国剩余定理合并 #include&l ...
- BZOJ1951 [Sdoi2010]古代猪文 中国剩余定理 快速幂 数论
原文链接http://www.cnblogs.com/zhouzhendong/p/8109156.html 题目传送门 - BZOJ1951 题意概括 求 GM mod 999911659 M=∑i ...
随机推荐
- AppInventor2笔记
将视觉化的 块语言 翻译为 Android上的实现 的编译器使用了Kawa语言框架,而Kawa是Scheme编程语言的方言,由Per Bothner开发,并由自由软件基金会发布,它是GNU操作系统的一 ...
- D. Match & Catch 后缀自动机 || 广义后缀自动机
http://codeforces.com/contest/427/problem/D 题目是找出两个串的最短公共子串,并且在两个串中出现的次数只能是1次. 正解好像是dp啥的,但是用sam可以方便很 ...
- es6 vs commonjs
'use strict' export function showMe() { alert("es6"); }; class logging { constructor() { a ...
- 突破Http协议
突破Http协议 我到不先说什么Http什么的,对于HTTP的彻底理解是http是应用层的一个程序,就像我们写的诸多客户端和服务器模型,我们可能为了可靠,为了方便数据的解析,我们在数据包中其实就是结构 ...
- js 省份城市二级动态联动的例子
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- 从数组去重这个函数来体验es6的高效率
前几天碰到一个题目,要求是这样的. 题目描述 为 Array 对象添加一个去除重复项的方法 示例1 输入 [false, true, undefined, null, NaN, 0, 1, {}, { ...
- Aspose.Words .NET如何实现文档合并的同页分页显示
当我们需要将一个文档添加到另一个文档时,经常会有不同的显示需求.为了文档的流畅,我们需要源文档和目标文档在内容上实现连续显示:而为了更好地区分文档,我们经常会希望两个文档的合并实现分页显示. 下面,就 ...
- C#编程的几个概念
编译器(计算机) 开发人员 指令&对象 C# 有一批既定的指令, 关键字,方法.函数 变量.控件 通过指令去操作对象. 1. 熟记指令 2. 指令-对象的可操作关系 3. 合乎语法规范
- java使用commons-fileupload进行文件上传
java中使用文件上传时需要使用特定的类库,这里使用commons-files类库进行文件上传,在http://commons.apache.org/proper/commons-fileupload ...
- PHP正则表达式实例汇总
$str = preg_replace("/(<a.*?>)(.*?)(<\/a>)/", '\1<span class="link&quo ...