codeforce 459DIV2 C题
题意
一串括号字符串,里面存在一些‘?’,其中‘?’既可以当作 '(' 又可以当作 ')' ,计算有多少对(l,r),在s中[sl,s(l+1),s(l+2),.....sr],内的括号是匹配的。n=strlen(s)<=5000。
分析
这个题还是卡了很久的,我果然是很菜的。
(错误思路)
一开始的时候想,用一个变量cur表示还未匹配的左括号 '(' ,用变量num记录‘?’的数量,‘?’尽量当右括号使用,在判断(l,r)是否匹配的时候从左往右扫,遇到'(' 的时候cur++,遇到 ')'cur--,如果最左边的字符是'?'那么直接将其变成'(' num--,cur++;因为它如果是')'不再有作用。当cur==num的时候说明当前长度是匹配的。如果num>cur,且(num-cur)%2==0则说明问好可以和‘(’匹配,剩下的‘?’自己互相匹配。
错误代码:
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=+;
char s[maxn];
int n;
int main(){
scanf("%s",s);
n=strlen(s);
int ans=;
for(int i=;i<n;i++){
int cur=,num=;
if(s[i]==')')continue;
else cur++;
for(int j=i+;j<n;j++){
bool jud=;
if(s[j]=='(')cur++;
if(s[j]==')')cur--;
if(s[j]=='?')num++;
if(cur==&&num==)jud=;
else if(cur==&&num){cur++;num--;}
if(cur==num)jud=;
else if(num>cur&&(num-cur)%==)jud=;
if(jud)ans++;
}
}
cout<<ans<<endl;
return ;
}
思路纠正:
上面一开始我考虑最左边的'?'只能被当作(使用,可以在深入考虑一下,如果当前?的数量大于(的数量,那么多的?就只能被当作(使用否则没法匹配。这样可以消除对于右边的影响 "(??(()"也就是‘?’当作‘)’来匹配左边的‘(’。
正确代码:
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=+;
char s[maxn];
int n;
int main(){
scanf("%s",s);
n=strlen(s);
int ans=;
for(int i=;i<n;i++){
int cur=,num=;
if(s[i]==')')continue;
else cur++;
for(int j=i+;j<n;j++){
bool jud=;
if(s[j]=='(')cur++;
if(s[j]==')')cur--;
if(s[j]=='?')num++;
if(cur==&&num==)jud=;
else if(cur==&&num){cur++;num--;}
if(cur==num)jud=;
else if(num>cur&&(num-cur)%==)jud=;
if(jud)ans++;
}
}
cout<<ans<<endl;
return ;
}
codeforce 459DIV2 C题的更多相关文章
- codeforce 461DIV2 F题
题意 题目给出n,k,要求找出一个1到n的子集,(a,b)的对数等于k:(a,b)满足a<b且b%a==0: 分析 还记不记得求素数的时候的欧拉筛!对就那样!如果把每个数字看作一个点的话,可以通 ...
- codeforce 461DIV2 E题
题意 有n棵树排成一排,每个树上都有c[i]只小鸟,只有站在树下才可以召唤小鸟,在i-th树下召唤k(k<=c[i])只小鸟需要消耗cost[i]*k的法力值,但是每召唤一只小鸟可以将法力值的上 ...
- codeforce 462DIV2 C题
题意 给出一个只含有1和2的序列,有n个元素,可以选择一段区间进行翻转操作,求再反转后的最大非递减子序列的长度 分析 太菜了只想出了N^2的做法.序列只有1和2,那么每个非递减子序列都会有一个分界点, ...
- codeforce 460DIV2 D题
感觉这个题不错,对拓扑排序有了更深的了解,用两种拓扑排序都写了些试试. dfs #include <cstdio> #include <algorithm> #include ...
- Two progressions CodeForce 125D 思维题
An arithmetic progression is such a non-empty sequence of numbers where the difference between any t ...
- codeforce 457DIV2 C题
题意 你需要构造一个n个点m条边的无向有权图,要求这个图的MST中边权的和与从1到n的最短路长度都为素数 分析 可以想到这样一种贪心,在i到i+1直接连一条边,这样最短路和MST都会是同样的一些边.只 ...
- codeforce 457DIV2 B题
题意: 题目给出两个整数n,k,(n<=10^18,k<=10^5),求一个含有k个整数的序列,要求以2为底,以序列内数字为幂的和为n,其中序列内最大的数最小,若有多个序列满足条件,输出 ...
- DSU on Tree浅谈
DSU on tree 在之前的一次比赛中,学长向我们讲了了这样一个神奇的思想:DSU on tree(树上启发式合并),看上去就非常厉害--但实际上是非常暴力的一种做法;不过暴力只是看上去暴力,它在 ...
- ACDream手速赛2
地址:http://acdream.info/onecontest/1014 都是来自Codeforce上简单题. A. Boy or Girl 简单字符串处理 B. Walking in ...
随机推荐
- Leetcode 1020. Number of Enclaves
dfs或者bfs class Solution: def dfs(self, A, rows, cols, i, j): if not (0 <= i < rows and 0 <= ...
- 程序员有什么办法能快速梳理java知识点?有这八张图就够了
一图胜千言,下面图解均来自Program Creek 网站的Java教程,目前它们拥有最多的票选.如果图解没有阐明问题,那么你可以借助它的标题来一窥究竟. 1.字符串不变性 下面这张图展示了这段代码做 ...
- 部署tinyproxy透明代理服务
线上需要一个https的透明代理,开始打算用nginx,调试了一段时间发现配置较复杂且没有成功.后来用的tinyproxy做的透明代理.安装配置过程就是下载.解压.编译.安装.配置.启动一波流: 安装 ...
- [QT][SQLITE][QTDEMO]qt5.8_sqlite数据库_demo
qt环境:5.8 数据库:sqlite //-------------------------------------- sqlite 日期 搜索 -------------------------- ...
- WPF 自定义DateControl DateTime控件(转)
自定义日期控件,月份选择.如下是日期的一些效果图. 具体的样式.颜色可以根据下面的代码,自己调节即可 1.日期控件的界面 <UserControl x:Class="WpfApp ...
- dirname 和 basename
dirname 和 basename 命令 [root@localhost /]# cat /tmp/a.sh dirname $0 #获取脚本所在的路径 basename $0 ...
- mysql的账号管理
mysql的账号管理 最先匹配 user 表(包含:用户列 权限列 安全列 资源控制列)连接判断:host user password字段(user的授权是全局的): 然后匹配db表:如果只是给指定 ...
- 通过html字符串连接组合并调用javascript函数
----通过字符串连接并调用javascript函数-- var t_html = $("#Photo").html(); var n_html = "<a id= ...
- unittest之跳过用例(skip) (含如何调用类里面函数相互调取变量的方法)
当测试用例写完后,有些模块有改动时候,会影响到部分用例的执行,这个时候我们希望暂时跳过这些用例. 或者前面某个功能运行失败了,后面的几个用例是依赖于这个功能的用例,如果第一步就失败了,后面的用例也就没 ...
- java多线程-------------基础的Thread.CURRNET
总结:感觉不是太难,不过我写出来了,但竟然不理解它的意思?多线程就是多个任务同时进行 public class Test2 { public static void main(String[] arg ...