题目大意

\[\sum_{i = 1}^{N!} [gcd(i, M!) = 1]
\]

题解

显然,题目就是求

\[N!(1-\frac{1}{p_1})(1-\frac{1}{p_2})...
\]

\[N!\prod(p_i - 1)(\prod p_i)^{-1}
\]

预处理一下,都是线性复杂度。

注意:

  1. N=1的情况
  2. long long

所以,数论题一定要注意各种特殊情况和longlong

代码

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn = 10000110;
const int N = 10000010;
int n, m, t, r;
int prime[maxn], check[maxn], d[maxn];
int prd1[maxn], prd2[maxn], fact[maxn];
int tot = 0; inline int read() {
char c = getchar();
int f = 1, x = 0;
while (!isdigit(c)) {
if (c == '-')
f = -1;
c = getchar();
}
while (isdigit(c))
x = x * 10 + c - '0', c = getchar();
return x * f;
} inline void get_prime(int n) {
memset(check, 0, sizeof(check));
for (int i = 2; i <= n; i++) {
if (!check[i])
prime[tot++] = i;
for (int j = 0; j < tot; j++) {
if (i * prime[j] > n)
break;
check[i * prime[j]] = 1;
if (i % prime[j] == 0)
break;
}
}
}
inline void get_prd(int p) {
// get prd (p_i - 1) and prd (p_i);
prd1[0] = 1;
prd2[0] = 2;
for (int i = 1; i <= tot; i++) {
prd1[i] = (((ll)prime[i] - 1) % p * (ll)prd1[i - 1]) % p;
prd2[i] = (ll)(prime[i] % p * (ll)prd2[i - 1]) % p;
}
}
inline void init() { for (int i = 0; i < tot; i++) {
for (int j = prime[i]; j < prime[i + 1]; j++)
d[j] = i;
}
fact[0] = fact[1] = 1;
for (int i = 2; i <= N; i++)
fact[i] = (ll)(fact[i - 1] * (ll)i) % r;
}
int pow(int a, int b, int p) {
int x = 1;
int c = b;
while (c) {
if (c & 1)
x = (ll)((ll)x * a) % p;
a = (ll)((ll)a * a) % p;
c >>= 1;
}
return x;
}
int inv(int a, int p) { return pow(a, p - 2, p); }
int main() {
scanf("%lld %lld", &t, &r);
get_prime(N);
get_prd(r);
init();
while (t--) {
n = read();
m = read();
if (m == 1) {
printf("%lld\n", fact[n]);
continue;
}
int ans = ((ll)((ll)fact[n] * prd1[d[m]]) % r * (ll)inv(prd2[d[m]], r)) % r;
printf("%d\n", ans);
}
}

[bzoj2186][Sdoi2008]沙拉公主的困惑——数论的更多相关文章

  1. 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数

    [bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...

  2. BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 5003  Solved: 1725 [Submit] ...

  3. BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][S ...

  4. [bzoj2186][Sdoi2008]沙拉公主的困惑_数论

    沙拉公主的困惑 bzoj-2186 Sdoi-2008 题目大意:求N!中与M!互质的数的个数. 注释:$1\le N,M\le 10^7$. 想法:显然是求$\phi(M!)$.这东西其实只需要将数 ...

  5. BZOJ2186 SDOI2008沙拉公主的困惑(数论)

    由于n!是m!的倍数,而对于每个与m!互质且小于m!的数x,x+m!.x+2*m!……也与其互质,所以答案即为(n!/m!)*φ(m!). φ(m!)=m!*∏(1-1/pi).其中的pi即为1~m中 ...

  6. 【数论】【欧拉函数】【筛法求素数】【乘法逆元】【快速幂取模】bzoj2186 [Sdoi2008]沙拉公主的困惑

    http://www.cnblogs.com/BLADEVIL/p/3490321.html http://www.cnblogs.com/zyfzyf/p/3997986.html 翻了翻题解,这两 ...

  7. BZOJ2186: [Sdoi2008]沙拉公主的困惑

    传送门 常规数论题,利用欧拉函数的相关性质. 题求$[1,N!]$中与$M!$互质的数的个数,且$M \leq N$.然后根据欧拉函数的相关性质很容易得出这道题的答案为$\frac{\phi (M!) ...

  8. BZOJ 2186 SDOI2008 沙拉公主的困惑 数论

    题目大意:给定询问组数T和取模数P,每次询问给定两个整数n和m,求1~(n!)的数中与m!互质的数个个数模P (m<=n) 首先T<=1W,暴力肯定过不去,我们须要预处理一些东西 首先我们 ...

  9. 【BZOJ2186】沙拉公主的困惑(数论)

    [BZOJ2186]沙拉公主的困惑(数论) 题面 BZOJ 题解 考虑答案是啥 先假设\(n=m\) 现在求的就是\(\varphi(m!)\) 但是现在\(n!\)是\(m!\)的若干倍 我们知道 ...

随机推荐

  1. OpenCV入门:(四:混合两张图片)

    1. 原理 对两张图片使用如下公式可以得到两张图片的混合图片, 其中f0(x),f1(x)分别是图片1和图片2同一位置的像素点. 2. OpenCV中的AddWeight函数 函数和参数说明: ) s ...

  2. 「日常训练」Our Tanya is Crying Out Loud (CFR466D2B)

    题意(Codeforces 940B) 对一个数字$x$,你有两个决策:花费$A$减一.或花费$B$除以$k$(但必须可以除尽).问使之到$1$的最少花费. 分析 贼鸡儿简单,但我花式犯蠢……如果除不 ...

  3. 杀死 tomcat 进程的脚本

    新建一个.sh 文件 把下面的内容复制进去.然后 把这个文件放到tomcat 的bin目录下在关闭tomcat 执行这个脚本. 可以解决 在关闭tomcat的时候 总是遗留一些tomcat进程没有结束 ...

  4. flask_sqlalchemy中db.session是如何保持请求间独立的--源码阅读笔记

    本文主要是为了验证两个问题: flask处理请求时通过新建线程.进程.协程的区别(顺带一提) flask_sqlalchemy是如何使用db.session使多个请求中保函的改变同一个表的sql操作不 ...

  5. xshell连接不到虚拟机,安装ssh服务

    刚安装的虚拟机镜像是Ubuntu 16.04版本,防火墙已经关闭. 测试: 检查虚拟机分配的ip地址. 1.虚拟机ping宿主机:可以ping通 2.宿主机ping虚拟机:可以ping通 3.检查网络 ...

  6. python之time和os模块

    1.time.time()获得的是一个时间戳,距离1970年以来多少秒 2.time.strftime(),按固定格式设置时间 import time print(time.localtime())# ...

  7. Daily Scrum02 12.02

    今天是黑色星期一,虽然大家最近被各种大作业压得身心疲惫,但是团队的凝聚力战胜了一切不快. 看看同志们今天的战绩,是不是又有一种充实感油然而生呢??? By Ryan Mao who? Today? T ...

  8. Remix-Solidity IDE上run选项下Environment选择Web3 Provider,出现不能连接到测试网Ganache提示

    解决办法:通常情况下,自己使用的浏览器IDE是:https://ethereum.github.io/browser-solidity,如果出现连接不到Ganache测试网的提示,可以使用另一种浏览器 ...

  9. Uva 12627 Erratic Expansion(递归)

    这道题大体意思是利用一种递归规则生成不同的气球,问在某两行之间有多少个红气球. 我拿到这个题,一开始想的是递归求解,但在如何递归求解的思路上我的方法是错误的.在研读了例题上给出的提示后豁然开朗(顺便吐 ...

  10. 使用IMAGEMAGICK的CONVERT工具批量转换图片格式

    使用IMAGEMAGICK的CONVERT工具批量转换图片格式 http://www.qiansw.com/linux-imagemagick-convert-img.html Home > 文 ...