【题解】Zap(莫比乌斯反演)

裸题...

直接化吧

[P3455 POI2007]ZAP-Queries

所有除法默认向下取整

\[\Sigma_{i=1}^x\Sigma_{j=1}^y[(i,j)=k]
\\
=\Sigma_{i=1}^{x/k}\Sigma_{j=1}^{y/k}[(i,j)=1]
\\
=\Sigma_{i=1}^{x/k}\Sigma_{j=1}^{y/k}\Sigma_{d|(i,j)}\mu(d)
\\
=\Sigma_{d=1}^{min(x,y)}\Sigma_{i=1}^{x/k}\Sigma_{j=1}^{y/k}\mu(d)\times[d|(i,j)]
\\
=\Sigma_{d=1}^{min(x,y)}(\frac x {dk})(\frac y {dk})\mu(d)
\]

整除分块直接做...

有一个细节,可能有疑惑:

		r=min(x/(x/l),y/(y/l));
ans+=1ll*(x/(l*k))*(y/((l*k)))*(sum[r]-sum[l-1]);

整除分块为什么是这样的?为什么r=min(x/(x/l),y/(y/l));中的"\(l\)"和ans+=1ll*(x/(l*k))*(y/((l*k)))*(sum[r]-sum[l-1]);不统一,为什么是(x/(l*k))*(y/(l*k))?这不是整除分块正常的套路啊?

可以这样理解,整除分块利用了\(\lfloor \frac x l \rfloor\)在一定范围内不变的性质,所以我们同样也会有\(\lfloor\frac {\lfloor \frac x l \rfloor} k\rfloor\)在一定范围内不变化,并且前面那个式子包括的\(l\)的范围一定小于后面的那个\(l\)的范围,所以我们按照\(\lfloor \frac x l \rfloor\)整除分块即可。

至于如何按照\(\lfloor\frac {\lfloor \frac x l \rfloor} k\rfloor=\lfloor \frac x {lk} \rfloor\)分块,我也不知道怎么办,希望有高手指点一下QAQ

#include<bits/stdc++.h>

using namespace std;typedef long long ll;
template < class ccf >
inline ccf qr(ccf b){
register char c=getchar();register int q=1;register ccf x=0;
while(c<48||c>57)q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)x=x*10+c-48,c=getchar();
return q==-1?-x:x;}
inline int qr(){return qr(1);}
const int maxn=1e5+5;
bool usd[maxn];
int mu[maxn];
int sum[maxn];
vector < int > ve;
int x,y,k;
#define pb push_back
inline void gen(){
mu[1]=sum[1]=usd[1]=1;
for(register int t=2;t< maxn;++t){
if(not usd[t])
ve.pb(t),mu[t]=-1;
for(register auto p:ve)
if(1ll*p*t<maxn)
if(usd[p*t]=1,t%p) mu[p*t]=-mu[t];
else break;
else break;
sum[t]=sum[t-1]+mu[t];
}
} int main(){
gen();
int T=qr();
while(T--){
x=qr();y=qr();k=qr();
ll ans=0;
for(register int l=1,r=0,edd=min(x,y)/k;l<=edd;l=r+1){
r=min(x/(x/l),y/(y/l));
ans+=1ll*(x/(l*k))*(y/((l*k)))*(sum[r]-sum[l-1]);
}
cout<<ans<<endl;
}
return 0;
}

【题解】Zap(莫比乌斯反演)的更多相关文章

  1. BZOJ1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2951  Solved: 1293[Submit][Status ...

  2. Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...

  3. 【BZOJ1101】Zap [莫比乌斯反演]

    Zap Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Description 对于给定的整数a,b和d,有多少正整 ...

  4. 1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定 ...

  5. bzoj 1101 Zap —— 莫比乌斯反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 直接莫比乌斯反演. 代码如下: #include<cstdio> #inc ...

  6. BZOJ 1101 Luogu P3455 POI 2007 Zap (莫比乌斯反演+数论分块)

    手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Lu ...

  7. CF1139D Steps to One 题解【莫比乌斯反演】【枚举】【DP】

    反演套 DP 的好题(不用反演貌似也能做 Description Vivek initially has an empty array \(a\) and some integer constant ...

  8. BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )

    求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...

  9. BZOJ 1101 Zap(莫比乌斯反演)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1101 给定a,b,d,求有多少gcd(x,y)==d(1<=x<=a&& ...

随机推荐

  1. Bootstrap-初步学习

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="utf-8&quo ...

  2. mongoDB _id:ObjectId("xxxx")详解

     http://blog.haohtml.com/archives/10678   MongoDB ObjectId的优化  

  3. spring学习笔记(四)

    1.aop编程 a.前置通知 .... <!-- 配置被代理的对象 -->    <bean id="test1Service" class="com. ...

  4. Dapper用法小记

    https://github.com/StackExchange/Dapper dapper in 查询 string sql = "SELECT * FROM SomeTable WHER ...

  5. unity, windows: Unhandled Exception: System.UnauthorizedAccessException: Access to the path "XXX\Temp\Assembly-CSharp.dll.mdb" is denied

    的windows上使用unity,修改过脚本或inspector中的数值后运行编辑器报错: Unhandled Exception: System.UnauthorizedAccessExceptio ...

  6. git服务器gitlab之搭建和使用

    git服务器比较有名的是gitosis和gitolite,这两个管理和使用起来稍微有些复杂,没有web页面,而gitlab则是类似于github的一个工具,github无法免费建立私有仓库,并且为了代 ...

  7. CentOS设置程序开机自启动的方法

    转自:http://www.centos.bz/2011/09/centos-setup-process-startup-boot/ 在CentOS系统下,主要有两种方法设置自己安装的程序开机启动. ...

  8. sqlite or svn 错误 The database disk image is malformed 可解决

    在网上找了很多资料,很多网友都提到这个问题是不可解决的,面对这个问题,只能作罢. 但我不甘心这么丢失数据,最最后找到了一个解决方法.经测试,原来数据,全部保住. 以下为原文. http://www.s ...

  9. DMA (直接存储器访问)

    DMA (直接存储器访问) 编辑 DMA(Direct Memory Access,直接内存存取) 是所有现代电脑的重要特色,它允许不同速度的硬件装置来沟通,而不需要依赖于 CPU 的大量中断负载.否 ...

  10. [k8s]openshiftv1.5.1安装笔记

    centos7安装 net.ifnames=0 biosdevname=0 初始化系统 yum install wget -y wget -O /etc/yum.repos.d/CentOS-Base ...