基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出。梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号。(据说,高斯(Gauss)比莫比乌斯早三十年就曾考虑过这个函数)。

 
具体定义如下:
如果一个数包含平方因子,那么miu(n) = 0。例如:miu(4), miu(12), miu(18) = 0。
如果一个数不包含平方因子,并且有k个不同的质因子,那么miu(n) = (-1)^k。例如:miu(2), miu(3), miu(30) = -1,miu(1), miu(6), miu(10) = 1。
给出一个数n, 计算miu(n)。
Input
输入包括一个数n,(2 <= n <= 10^9)
Output
输出miu(n)。
Input示例
5
Output示例
-1

【分析】:

(1)如果这个数n能整除某个数的平方,那么函数值就为0;


(2)否则判断它的因子个数(k)的奇偶性,函数值为(-1)^k;


 【代码】:

#include<string.h>
#include<stdlib.h>
#include<queue>
#include<stack>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<stdlib.h>
#include<cmath>
#include<string>
#include<algorithm>
#include<iostream>
#define exp 1e-10
#define MAX(a,b) ((a)>(b)?(a):(b))
using namespace std;
const int N = ;
const int M = ;
const int inf = ;
const int mod = ;
int fun(int n)
{
int cnt;
int sum=;
for(int i=;i*i<=n;i++)
{
cnt=;
if(n%i==)
{
sum++;//记录质因子个数
while(n%i==)//计算因子个数
{
n=n/i;
cnt++;
}
if(cnt>=)//若此因子出现次数大于等于两次,则因子必存在i的平方
return ;
}
} if(n!=)
sum++;
return (sum%)?-:;//如果因子个数为奇数则函数值为-1 ,如果因子个数为偶数则函数值为1
}
int main()
{
int n;
while(~scanf("%d",&n))
printf("%d\n",fun(n));
return ;
}

51nod 1240 莫比乌斯函数【数论+莫比乌斯函数】的更多相关文章

  1. 51nod 1240 莫比乌斯函数

    题目链接:51nod 1240 莫比乌斯函数 莫比乌斯函数学习参考博客:http://www.cnblogs.com/Milkor/p/4464515.html #include<cstdio& ...

  2. $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数

    正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...

  3. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

  4. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  5. [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)

    [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...

  6. 深入理解javascript函数定义与函数作用域

    最近在学习javascript的函数,函数是javascript的一等对象,想要学好javascript,就必须深刻理解函数.本人把思路整理成文章,一是为了加深自己函数的理解,二是给读者提供学习的途径 ...

  7. JavaScript 函数节流和函数去抖应用场景辨析

    概述 也是好久没更新 源码解读,看着房价蹭蹭暴涨,心里也是五味杂陈,对未来充满恐惧和迷茫 ...(敢问一句你们上岸了吗) 言归正传,今天要介绍的是 underscore 中两个重要的方法,函数节流和函 ...

  8. 如果你也会C#,那不妨了解下F#(4):了解函数及常用函数

    函数式编程其实就是按照数学上的函数运算思想来实现计算机上的运算.虽然我们不需要深入了解数学函数的知识,但应该清楚函数式编程的基础是来自于数学. 例如数学函数\(f(x) = x^2+x\),并没有指定 ...

  9. js函数表达式和函数声明的区别

    我们已经知道,在任意代码片段外部添加包装函数,可以将内部的变量和函数定义"隐 藏"起来,外部作用域无法访问包装函数内部的任何内容. 例如: var a = 2; function ...

  10. [Machine Learning] logistic函数和softmax函数

    简单总结一下机器学习最常见的两个函数,一个是logistic函数,另一个是softmax函数,若有不足之处,希望大家可以帮忙指正.本文首先分别介绍logistic函数和softmax函数的定义和应用, ...

随机推荐

  1. C#中的SubString()的用法

    先看语法: String.SubString(int index,int length)     index:开始位置,从0开始       length:你要取的子字符串的长度 例子: using ...

  2. BZOJ3243 [Noi2013]向量内积 【乱搞】

    题目链接 BZOJ3243 题解 模数只有\(2\)或\(3\),可以大力讨论 如果模数为\(2\),乘积结果只有\(1\)或\(0\) 如果一个向量和前面所有向量乘积都为\(1\),那么其和前面向量 ...

  3. vector 基础

    http://classfoo.com/ccby/article/jnevK Vector的存储空间是连续的,list不是连续存储的 vector初始化 vector<int>v; //不 ...

  4. 安卓的progress

    https://www.cnblogs.com/wolipengbo/archive/2013/10/23/3383667.html

  5. 使用fuser查询文件、目录、socket端口的占用进程

    fuser可用于查询文件.目录.socket端口和文件系统的使用进程 1.查询文件和目录使用者 fuser最基本的用法是查询某个文件或目录被哪个进程使用: # fuser -v ./          ...

  6. x:Class, x:Key

    x:Class: 用来创建一个partial的class, 比如默认生成的x:Class="MyTest.MainWindow", 会自动生成一个MainWindow的partia ...

  7. PHP等比例生成缩略图

    /** * 生成缩略图 * $imgSrc 图片源路径 * $resize_width 图片宽度 * $resize_height 图片高度 * $dstimg 缩略图路径 * $isCut 是否剪切 ...

  8. JAVA 成员访问权限修饰符

    修饰符         类内部     package内         子类         其他 public             允许         允许                 ...

  9. mongoDB文档操作【增删改】

    MongoDB 插入文档 文档的数据结构和JSON基本一样. 所有存储在集合中的数据都是BSON格式. BSON是一种类json的一种二进制形式的存储格式,简称Binary JSON. 插入文档 Mo ...

  10. 使用pandas进行数据清洗

    本文转载自:蓝鲸的网站分析笔记 原文链接:使用python进行数据清洗 目录: 数据表中的重复值 duplicated() drop_duplicated() 数据表中的空值/缺失值 isnull() ...