HDU 2824.The Euler function-筛选法求欧拉函数
欧拉函数:
φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk),其中p1、p2…pk为n的所有素因子。
比如:φ(12)=12*(1-1/2)(1-1/3)=4。
可以用类似求素数的筛法。(素数打表)
先筛出n以内的所有素数,再以素数筛每个数的φ值。
比如求10以内所有数的φ值:
设一数组phi[11],赋初值phi[1]=1,phi[2]=2...phi[10]=10;
然后从2开始循环,把2的倍数的φ值*(1-1/2),则phi[2]=2*1/2=1,phi[4]=4*1/2=2,phi[6]=6*1/2=3....;
再是3,3的倍数的φ值*(1-1/3),则phi[3]=3*2/3=2,phi[6]=3*2/3=2,phi[9]=.....;(4的时候不符合条件)
再5,再7...因为对每个素数都进行如此操作,因此任何一个n都得到了φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk)的运算。
传送门:http://blog.csdn.net/scnujack/article/details/7420816
The Euler function
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6849 Accepted Submission(s): 2851
#include<bits/stdc++.h>
const int maxn=*1e6+;
using namespace std;
typedef long long ll;
ll phi[maxn];
void euler(){
for(int i=;i<maxn;i++)
phi[i]=i;
for(int i=;i<maxn;i++){
if(i==phi[i]){ //此时,i为素数,举例4,因为2的时候phi[4]值发生变化了,所以就把4跳过去了
for(int j=i;j<maxn;j+=i) //j累加i,将有i这个素因子的所有数都进行运算
phi[j]=phi[j]/i*(i-);
}
}
}
int main(){
euler();
int n,m;
while(~scanf("%d%d",&n,&m)){
ll ans=;
for(int i=n;i<=m;i++)
ans+=phi[i];
printf("%lld\n",ans);
}
return ;
}
HDU 2824.The Euler function-筛选法求欧拉函数的更多相关文章
- HDU2824-The Euler function-筛选法求欧拉函数+求和
欧拉函数: φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk),其中p1.p2-pk为n的所有素因子.比如:φ(12)=12*(1-1/2)(1-1/3)=4.可以用类似求素数的筛 ...
- The Euler function(线性筛欧拉函数)
/* 题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体 ...
- hdu 2824 The Euler function(欧拉函数)
题目链接:hdu 2824 The Euler function 题意: 让你求一段区间的欧拉函数值. 题解: 直接上板子. 推导过程: 定义:对于正整数n,φ(n)是小于或等于n的正整数中,与n互质 ...
- hdu 2814 快速求欧拉函数
/** 大意: 求[a,b] 之间 phi(a) + phi(a+1)...+ phi(b): 思路: 快速求欧拉函数 **/ #include <iostream> #include & ...
- 欧拉函数,打表求欧拉函数poj3090
欧拉函数 φ(n) 定义:[1,N]中与N互质的数的个数 //互质与欧拉函数 /* 求欧拉函数 按欧拉函数计算公式,只要分解质因数即可 */ int phi(int n){ int ans=n; ;i ...
- hdu 2824 The Euler function
The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU - 2824 The Euler function 欧拉函数筛 模板
HDU - 2824 题意: 求[a,b]间的欧拉函数和.这道题卡内存,只能开一个数组. 思路: ϕ(n) = n * (p-1)/p * ... 可利用线性筛法求出所有ϕ(n) . #include ...
- hdu 2824 The Euler function 欧拉函数打表
The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU——2824 The Euler function
The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
随机推荐
- JavaScript 执行环境(作用域)总结
所有变量(包括基本类型和引用类型)都存在一个执行环境(也称为作用域)当中,这个执行环境决定了变量的生命周期,以及哪一部分可以访问其中的变量. 以下是关于执行环境的几点总结: 执行环境有全局执行环境(全 ...
- npm基本使用
常见的使用场景有以下几种: 允许用户从NPM服务器下载别人编写的第三方包到本地使用. 允许用户从NPM服务器下载并安装别人编写的命令行程序到本地使用. 允许用户将自己编写的包或命令行程序上传到NPM服 ...
- java 使用ByteArrayOutputStream和ByteArrayInputStream实现深拷贝
首先介绍Java中的浅拷贝(浅克隆)和深拷贝(深克隆)的基本概念: 浅拷贝: 被复制对象的所有变量都含有与原来的对象相同的值,而所有的对其他对象的引用仍然指向原来的对象.浅复制仅仅复制所考虑的对象,而 ...
- cdh版本的hadoop安装及配置(伪分布式模式) MapReduce配置 yarn配置
安装hadoop需要jdk依赖,我这里是用jdk8 jdk版本:jdk1.8.0_151 hadoop版本:hadoop-2.5.0-cdh5.3.6 hadoop下载地址:链接:https://pa ...
- Visio中的Undo和Redo
1.Visio默认Undo和Redo操作是可用的,Appliacation中的UndoEnabled标志Undo和Redo操作是否可用. m_Visio.Window.Application.Undo ...
- BZOJ1934 [Shoi2007]Vote 善意的投票 【最小割】
题目 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以投和自己本来意愿 ...
- CF763E Timofey and our friends animals
题目戳这里. 首先题解给的是并查集的做法.这个做法很好想,但是很难码.用线段树数来维护并查集,暴力合并. 这里推荐另一个做法,可以无视\(K\)的限制.我们给每条边加个边权,这个边权为这条边左端点的值 ...
- Codis+redis 集群测试
Codis 是一个分布式 Redis 解决方案, 对于上层的应用来说, 连接到 Codis Proxy 和连接原生的 Redis Server 没有显著区别 (不支持的命令列表), 上层应用可以像使用 ...
- HibernateException: Unable to instantiate default tuplizer [org.hibernate.tuple.entity.PojoEntityTup
Caused by: org.hibernate.HibernateException: Unable to instantiate default tuplizer [org.hibernate.t ...
- jquery序列化表单
没有使用其他的东西 , 数据传送是最基本的. 前台: var info = $('#dataForm').serialize() ; alert(decodeURIComponent(info,tru ...