HDU 2824.The Euler function-筛选法求欧拉函数
欧拉函数:
φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk),其中p1、p2…pk为n的所有素因子。
比如:φ(12)=12*(1-1/2)(1-1/3)=4。
可以用类似求素数的筛法。(素数打表)
先筛出n以内的所有素数,再以素数筛每个数的φ值。
比如求10以内所有数的φ值:
设一数组phi[11],赋初值phi[1]=1,phi[2]=2...phi[10]=10;
然后从2开始循环,把2的倍数的φ值*(1-1/2),则phi[2]=2*1/2=1,phi[4]=4*1/2=2,phi[6]=6*1/2=3....;
再是3,3的倍数的φ值*(1-1/3),则phi[3]=3*2/3=2,phi[6]=3*2/3=2,phi[9]=.....;(4的时候不符合条件)
再5,再7...因为对每个素数都进行如此操作,因此任何一个n都得到了φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk)的运算。
传送门:http://blog.csdn.net/scnujack/article/details/7420816
The Euler function
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6849 Accepted Submission(s): 2851
#include<bits/stdc++.h>
const int maxn=*1e6+;
using namespace std;
typedef long long ll;
ll phi[maxn];
void euler(){
for(int i=;i<maxn;i++)
phi[i]=i;
for(int i=;i<maxn;i++){
if(i==phi[i]){ //此时,i为素数,举例4,因为2的时候phi[4]值发生变化了,所以就把4跳过去了
for(int j=i;j<maxn;j+=i) //j累加i,将有i这个素因子的所有数都进行运算
phi[j]=phi[j]/i*(i-);
}
}
}
int main(){
euler();
int n,m;
while(~scanf("%d%d",&n,&m)){
ll ans=;
for(int i=n;i<=m;i++)
ans+=phi[i];
printf("%lld\n",ans);
}
return ;
}
HDU 2824.The Euler function-筛选法求欧拉函数的更多相关文章
- HDU2824-The Euler function-筛选法求欧拉函数+求和
欧拉函数: φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk),其中p1.p2-pk为n的所有素因子.比如:φ(12)=12*(1-1/2)(1-1/3)=4.可以用类似求素数的筛 ...
- The Euler function(线性筛欧拉函数)
/* 题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体 ...
- hdu 2824 The Euler function(欧拉函数)
题目链接:hdu 2824 The Euler function 题意: 让你求一段区间的欧拉函数值. 题解: 直接上板子. 推导过程: 定义:对于正整数n,φ(n)是小于或等于n的正整数中,与n互质 ...
- hdu 2814 快速求欧拉函数
/** 大意: 求[a,b] 之间 phi(a) + phi(a+1)...+ phi(b): 思路: 快速求欧拉函数 **/ #include <iostream> #include & ...
- 欧拉函数,打表求欧拉函数poj3090
欧拉函数 φ(n) 定义:[1,N]中与N互质的数的个数 //互质与欧拉函数 /* 求欧拉函数 按欧拉函数计算公式,只要分解质因数即可 */ int phi(int n){ int ans=n; ;i ...
- hdu 2824 The Euler function
The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU - 2824 The Euler function 欧拉函数筛 模板
HDU - 2824 题意: 求[a,b]间的欧拉函数和.这道题卡内存,只能开一个数组. 思路: ϕ(n) = n * (p-1)/p * ... 可利用线性筛法求出所有ϕ(n) . #include ...
- hdu 2824 The Euler function 欧拉函数打表
The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU——2824 The Euler function
The Euler function Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
随机推荐
- (转)String,StringBuffer与StringBuilder的区别??
String 字符串常量StringBuffer 字符串变量(线程安全)StringBuilder 字符串变量(非线程安全) 简要的说, String 类型和 StringBuffer 类型的主要性能 ...
- [Leetcode] Binary tree maximum path sum求二叉树最大路径和
Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...
- Ubuntu下安装LNMP之Mysql的安装及卸载
Mysql的安装过程也可参考:http://blog.csdn.net/qq_20565303/article/details/69813868 Mysql安装包下载地址:https://dev.my ...
- tcp/ip网络协议学习
链路层介绍 网络层协议的数据单元是 IP 数据报 ,而数据链路层的工作就是把网络层交下来的 IP 数据报 封装为 帧(frame)发送到链路上,以及把接收到的帧中的数据取出并上交给网络层. 以太网 以 ...
- 7月19日day11总结
今天学习过程和小结 上午进行测试复习了 1,hdfs中namenode和datanode作用 2,hdfs副本存放机制 3,mapreduce计算处理过程 4,格式化hdfs命令 5,hdfs的核心配 ...
- jquery序列化表单
没有使用其他的东西 , 数据传送是最基本的. 前台: var info = $('#dataForm').serialize() ; alert(decodeURIComponent(info,tru ...
- struts2学习笔记(二)
一. 国际化的目标 1). 如何配置国际化资源文件 I. Action 范围资源文件: 在Action类文件所在的路径建立名为 ActionName_language_country.properti ...
- Servlet的doGet与doPost方法的区别与使用
Servlet的doGet与doPost方法的区别与使用 2016年07月07日 13:05:13 阅读数:10222 一,区别 在使用表单提交数据到服务器的时候有两张方式可共选择,一个是post一个 ...
- 【bzoj1010-toy】斜率优化入门模板
dsy1010: [HNOI2008]玩具装箱 [题目描述] 有n个数,分成连续的若干段,每段(假设从第j个到第i个组成一段)的分数为 (X-L)^2,X为j-i+Sigma(Ck) i<=k& ...
- 12.22笔记(关于CALayer//Attributes//CALayer绘制图层//CALayer代理绘图//CALayer动画属性//CALayer自定义子图层//绘图pdf文件//绘图渐变效果)
12.22笔记 pdf下载文件:https://www.evernote.com/shard/s227/sh/f81ba498-41aa-443b-81c1-9b569fcc34c5/f033b89a ...