POJ-3468-A Simple Problem with Integers(线段树 区间更新 区间和)
A Simple Problem with Integers
Time Limit: 5000MS | Memory Limit: 131072K | |
Total Submissions: 139191 | Accepted: 43086 | |
Case Time Limit: 2000MS |
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4
Sample Output
4
55
9
15
Hint
The sums may exceed the range of 32-bit integers.
线段树模板题
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <stack>
#define oo 0x3f3f3f3f
using namespace std;
struct node
{
long long int lazy;
long long int data;
int l, r;
};
struct node tree[10000000];
long long int Begin[10000000];
void Buildtree( int root, int l, int r )
{
tree[root].l = l;
tree[root].r = r;
tree[root].lazy = 0;
if( l == r )
tree[root].data = Begin[l];
else
{
int mid = ( l + r ) >> 1;
Buildtree( root<<1, l, mid );
Buildtree( root<<1|1, mid+1, r);
tree[root].data = tree[root<<1].data + tree[root<<1|1].data;
}
}
void Pushdown( int root )
{
if( tree[root].lazy != 0 )
{
tree[root<<1].lazy += tree[root].lazy;
tree[root<<1|1].lazy += tree[root].lazy;
tree[root<<1].data += ( tree[root<<1].r - tree[root<<1].l + 1 ) * tree[root].lazy;
tree[root<<1|1].data += ( tree[root<<1|1].r - tree[root<<1|1].l + 1 ) * tree[root].lazy;
tree[root].lazy = 0;
}
}
void Updata( int root, int l, int r, int z )
{
int i = tree[root].l, j = tree[root].r;
if( i > r || l > j )
return;
if( i >= l && j <= r )
{
tree[root].data += (j - i + 1) * z;
tree[root].lazy += z;
return;
}
Pushdown( root );
Updata( root<<1, l, r, z );
Updata( root<<1|1, l, r, z );
tree[root].data = tree[root<<1].data + tree[root<<1|1].data;
}
long long int Query ( int root, int l, int r )
{
int i = tree[root].l, j = tree[root].r;
if( i > r || l > j )
return 0;
if( l <= i && r >= j )
return tree[root].data;
Pushdown( root );
return Query(root<<1, l, r) + Query(root<<1|1, l, r);
}
int main()
{
int i, n, q;
scanf("%d %d", &n, &q);
for( i=1; i<=n; i++ )
scanf("%lld", &Begin[i]);
Buildtree( 1, 1, n );
while( q-- )
{
char order;
int a, b, c;
getchar();
scanf("%c", &order);
if( order == 'C' )
{
scanf("%d %d %d", &a, &b, &c);
Updata( 1, a, b, c);
}
else if( order == 'Q' )
{
scanf("%d %d", &a, &b);
printf("%lld\n", Query( 1, a, b ));
}
}
return 0;
}
POJ-3468-A Simple Problem with Integers(线段树 区间更新 区间和)的更多相关文章
- POJ 3468 A Simple Problem with Integers (线段树多点更新模板)
题意: 给定一个区间, 每个区间有一个初值, 然后给出Q个操作, C a b c是给[a,b]中每个数加上c, Q a b 是查询[a,b]的和 代码: #include <cstdio> ...
- poj 3468 A Simple Problem with Integers 线段树区间加,区间查询和
A Simple Problem with Integers Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?i ...
- poj 3468 A Simple Problem with Integers 线段树区间加,区间查询和(模板)
A Simple Problem with Integers Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?i ...
- poj 3468 A Simple Problem with Integers 线段树第一次 + 讲解
A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal w ...
- [POJ] 3468 A Simple Problem with Integers [线段树区间更新求和]
A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal ...
- poj 3468 A Simple Problem with Integers (线段树区间更新求和lazy思想)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 75541 ...
- POJ 3468 A Simple Problem with Integers(线段树 成段增减+区间求和)
A Simple Problem with Integers [题目链接]A Simple Problem with Integers [题目类型]线段树 成段增减+区间求和 &题解: 线段树 ...
- POJ 3468 A Simple Problem with Integers //线段树的成段更新
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 59046 ...
- poj 3468 A Simple Problem with Integers 线段树加延迟标记
A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal ...
- poj 3468 A Simple Problem with Integers 线段树区间更新
id=3468">点击打开链接题目链接 A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072 ...
随机推荐
- 在.jsp中非表单请求action的几种方式总结
转自:https://www.jb51.net/article/35621.htm 1 一: 复制代码 代码如下: <a href="userAction.do?flag=user_r ...
- latex中如何引用公式
在使用latex编辑文章时,经常会需要引用公式.图表等等. 如果我们人为地对这些公式.图表进行编号1-2-3-4,然后在文章中使用Eq(1)-Eq(2)-Eq(3)-Eq(4)去引用这些公式,固然是可 ...
- web页面在ios下不支持fixed可用absolute替代的方案
本文引用出处:http://www.cnblogs.com/PeunZhang/p/3553020.html. 对于 ios4 和 android2.2 以下不支持 position:fixed 的问 ...
- POJ1161(并查集)
1.题目链接地址 http://poj.org/problem?id=1161 2.源代码 #include <iostream> using namespace std; ]; ]; i ...
- 安装oracle xe一些注意点
主要是web管理数据的的端口8080端口的问题, 会和tomcat冲突 安装时把开启8080端口的tomcat启动了 占用8080端口就行了, 然后安装oracle xe就会让你输入 web管理数据的 ...
- 求正整数n的所有因子
因子的概念:假如整数n除以m,结果是无余数的整数,那么我们称m就是n的因子. 需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立.反过来说,我们称n为m的倍数. 求一个正整数n的所有 ...
- Weblogic的安装、配置与应用部署
1. Weblogic安装 1.1 Linux下安装过程 安装环境: 操作系统: redhat-release-5Server-5.4.0.3 Weblogic版本: Weblogic 9.24 1) ...
- Mybatis简化sql书写,别名的使用
之前,我们在sql映射xml文件中的引用实体类时,需要写上实体类的全类名(包名+类名),如下: <!-- 创建用户(Create) --> <insert id="addU ...
- dubbo参数调优
dubbo中配置优先级规律:方法级配置优先级高于接口级,consumer的优先级高于provider. 详细: consumer的method配置 > provider的method配置 c ...
- suse配置dhcp服务器
Suse dhcp服务器安装在安装系统时勾选 Suse dhcp 默认配置文件 /etc/dhcpd.conf Suse dhcp 启动程序 /etc/init.d/dhcpd restart 配置 ...