SPOJ - FAVDICE 简单期望
dp[0]=0;
// rep(i,1,n) dp[i]=(double)(n-i)/n*dp[i-1]+1+(double)(i)/n*dp[i];
// (n-i)/n dp[i]= n-i / n * dp[i-1] +1 => dp[i]=dp[i-1]+n/n-i
rep(i,1,n-1) dp[i]=dp[i-1]+(double)n/(n-i);
ans为dp[n-1]+1
SPOJ - FAVDICE 简单期望的更多相关文章
- SPOJ FAVDICE 数学期望
题目大意: 一个有n面的色子抛掷多少次能使所有面都能被抛到过,求期望值 总面数为n,当已经抛到过 i 个不同面时,我们抛出下一个不同面的概率为 (n-i)/n,那么抛的次数为 n/(n-i) 将所有抛 ...
- [spoj Favorite Dice ][期望dp]
(1)https://vjudge.net/problem/SPOJ-FAVDICE 题意:有一个n面的骰子,每一面朝上的概率相同,求所有面都朝上过至少一次的总次数期望. 题解:令dp[i]表示 i ...
- HDU 3232 && UVA 12230 (简单期望)
Crossing Rivers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 3569 Imaginary Date 简单期望
推一下公式.就会发现是这个.. 由于设结果有x种方案.则每一个数字出现的概率都均等,然后和就是x*m 每种方案的概率是1/x 每一个数出现的概率都是1/n 所以每一个方案的和就是 sum/n *m # ...
- 简单概率dp(期望)-zoj-3640-Help Me Escape
题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4808 题目大意: 有n条路,选每条路的概率相等,初始能力值为f,每 ...
- 2018.08.30 bzoj4318: OSU!(期望dp)
传送门 简单期望dp. 感觉跟Easy差不多,就是把平方差量进阶成了立方差量,原本维护的是(x+1)2−x2" role="presentation" style=&qu ...
- 概率dp专场
专题链接 第一题--poj3744 Scout YYF I 链接 (简单题) 算是递推题 如果直接推的话 会TLE 会发现 在两个长距离陷阱中间 很长一部分都是重复的 我用 a表示到达i-2步的概率 ...
- 【NOIP2016】换教室
题目描述 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 i ( 1≤ i≤n)个时同段上, 两节内容相同的课 ...
- Luogu 4206 [NOI2005]聪聪与可可
BZOJ 1415 简单期望 + 记忆化搜索. 发现聪聪每一步走向的地方是在可可的所在位置确定时是确定的,设$nxt_{x, y}$表示聪聪在$x$,可可在$y$时聪聪下一步会走到哪里,我们先预处理出 ...
随机推荐
- Luogu 1606 [USACO07FEB]白银莲花池Lilypad Pond
感觉应当挺简单的,但是弄了好久……菜死了 如果不考虑那些为$1$的点,直接跑个最短路计数就好了,但是我们现在有一些边可以不用付出代价,那么只要在连边的时候先预处理搜一下就好了. 原来的想法是拆点,但是 ...
- cakephp重写配置
开启重新: (1)开启服务器的mod_rewrite模块 (2)注释掉app/ConfigScore.php中的 Configure::write('App.baseUrl', env('SCRIPT ...
- HTTP请求:POST和GET的差异
1,一般情况下应用目的不同:GET是从服务器上获取数据,POST是向服务器传送数据. 2,将数据提交到服务器的方式不同:GET是把参数数据队列加到提交表单的ACTION属性所指的URL中,值和表单内各 ...
- JMS-消息中间件的应用01-基本概念-来自慕课学习-新手学习
什么是JMS? Java消息服务(Java Message Service),即JMS,是一个java平台中关于面向消息中间件的API,用于在两个应用程序之间,或分布式系统中发送消息,进行异步通信. ...
- jstl c
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%> 例子:list中有两 ...
- Stopwatch运行时间 Parallel并行任务
using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using S ...
- 解决在cmder中bash(WSL)上下箭头不能使用问题
有三种解决方式,第一种方式最简单实用 安装新版本wslbridge 这个解决方法最简单,最实用,下载第三方wslbridge,安装即可使用. 这时再进入cmder,运行bash.exe,可以发现上下左 ...
- CENTOS7 使用 Nginx + Uwsgi 部署 Django 项目
写在前面的话 最近总是见到有新学 Django 的朋友在部署自己的项目到 Linux 上面的时候运行不起来,所以就动手写了这篇博客. 对于不会搭建 Python 3 环境的朋友可以参考前面的博客[CE ...
- ios app提交之前需要哪几个证书
1.遇到的问题 一款App在别人的机器上开发和发布,现在迭代更新和开发需要在一台新mac机上开发和发布. (使用同一个开发者账号)问题: 1.在新mac机器上开发并导入真机测试,是不是需要从别人的机器 ...
- 【bzoj1066】: [SCOI2007]蜥蜴 图论-最大流
[bzoj1066]: [SCOI2007]蜥蜴 把石柱拆点,流量为高度 然后S与蜥蜴连流量1的边 互相能跳到的石柱连inf的边 石柱能到边界外的和T连inf的边 然后跑dinic就好了 /* htt ...