Reverse a Road II
Time Limit: 10000ms, Special Time Limit:25000ms, Memory Limit:65536KB
Total submit users: 10, Accepted users: 6
Problem 13411 : No special judgement
Problem description

JAG Kingdom is a strange kingdom such that its N cities are connected only by one-way roads. The N cities are numbered 1 through N. ICPC (International Characteristic Product Corporation) transports its products from the factory at the city S to the storehouse
at the city T in JAG Kingdom every day. For efficiency, ICPC uses multiple trucks at once. Each truck starts from S and reaches T on the one-way road network, passing through some cities (or directly). In order to reduce risks of traffic jams and accidents,
no pair of trucks takes the same road.



Now, ICPC wants to improve the efficiency of daily transports, while ICPC operates daily transports by as many trucks as possible under the above constraint. JAG Kingdom, whose finances are massively affected by ICPC, considers to change the direction of one-way
roads in order to increase the number of trucks for daily transports of ICPC. Because reversal of many roads causes confusion, JAG Kingdom decides to reverse at most a single road.



If there is no road such that reversal of the road can improve the transport efficiency, JAG Kingdom need not reverse any roads. Check whether reversal of a single road can improve the current maximum number of trucks for daily transports. And if so, calculate
the maximum number of trucks which take disjoint sets of roads when a one-way road can be reversed, and the number of roads which can be chosen as the road to be reversed to realize the maximum.

Input

The input consists of multiple datasets. The number of dataset is no more than 100.



Each dataset is formatted as follows.



 

The following M lines describe the information of the roads. The i-th line of them contains two integers aiand bi(1 ≤ ai,bi≤ N, ai≠ bi), meaning that the i-th road is directed from ai to bi.



The end of input is indicated by a line containing four zeros.

Output

For each dataset, output two integers separated by a single space in a line as follows: If reversal of a single road improves the current maximum number of trucks for daily transports, the first output integer is the new maximum after reversal of a road,
and the second output integer is the number of roads which can be chosen as the road to be reversed to realize the new maximum. Otherwise, i.e. if the current maximum cannot be increased by any reversal of a road, the first output integer is the current maximum
and the second output integer is 0.

Sample Input
4 4 1 4
1 2
3 1
4 2
3 4
7 8 1 7
1 2
1 3
2 4
3 4
4 5
4 6
5 7
7 6
6 4 5 2
1 2
1 3
4 5
5 6
10 21 9 10
9 1
9 2
9 3
9 4
10 1
10 2
10 3
10 4
1 5
2 5
2 6
3 6
3 7
4 7
4 8
1 8
5 10
6 10
7 10
10 8
10 9
2 15 1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
1 2
0 0 0 0
Sample Output
1 2
2 1
0 0
4 6
15 0
Problem Source

JAG Practice Contest for ACM-ICPC Asia Regional 2014

题意:给一个有向图,n个点,m条边,起点S ,终点T。现有非常多个机器人要从S走到T,每条边仅仅能走一个机器人,现要能够改一条边的方向,问最多有多少个机器人能够从S走到T。而且有多少种改法。(假设没有改变边的方向,则改法为0。)

解题:如要没有加条件:能够改一条边。那么这题就是找最多有多少条路要以从起点S走到T。建图:每条有向边的边权为1,用最大流跑一次。那么如今要改一条边的方向:假设要更改的边是走过的边,那么不会使走法添加,有能够还使路的条数降低,所以改的边一定不是满流的边(即走过的边)。如今要改变一条不在走过的边< u  ,  v >变成<v , u>,使得能够增流,那么仅仅要从S沿着没有走过的边到  v 。再从u沿着没有走过的边 到 T。这样就能够使得路的条数增多。

那么这样我们就能够用BFS标记 SF[] 能从S点沿着最大流每条边的残流量>0的边走到的一些点V,再标记
TF[] 能从T点沿着最大流每条边的残流量==0的边走到一些点U(即表示:能从U沿着那些边走到T)。最后仅仅要枚举原来不在走过的边<u , v >,假设:SF[v]==1&&TF[u]==1则改变此边方向能够增流。方案数k+1。

最后的最多机器人数ans = maxflow + k>0 ? 1 : 0  。

#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
#define captype int const int MAXN = 1010; //点的总数
const int MAXM = 40010; //边的总数
const int INF = 1<<30;
struct EDG{
int to,next;
captype cap;
} edg[MAXM];
int eid,head[MAXN];
int gap[MAXN]; //每种距离(或可觉得是高度)点的个数
int dis[MAXN]; //每一个点到终点eNode 的最短距离
int cur[MAXN]; //cur[u] 表示从u点出发可流经 cur[u] 号边
int pre[MAXN]; void init(){
eid=0;
memset(head,-1,sizeof(head));
}
//有向边 三个參数。无向边4个參数
void addEdg(int u,int v,captype c,captype rc=0){
edg[eid].to=v; edg[eid].next=head[u];
edg[eid].cap=c; head[u]=eid++; edg[eid].to=u; edg[eid].next=head[v];
edg[eid].cap=rc; head[v]=eid++;
}
captype maxFlow_sap(int sNode,int eNode, int n){//n是包含源点和汇点的总点个数,这个一定要注意 memset(gap,0,sizeof(gap));
memset(dis,0,sizeof(dis));
memcpy(cur,head,sizeof(head));
pre[sNode] = -1;
gap[0]=n;
captype ans=0; //最大流
int u=sNode;
while(dis[sNode]<n){ //推断从sNode点有没有流向下一个相邻的点
if(u==eNode){ //找到一条可增流的路 for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to]){
edg[i].cap-=1;
edg[i^1].cap+=1; //可回流的边的流量
}
ans+=1;
u=sNode;
continue;
}
bool flag = false; //推断是否能从u点出发可往相邻点流
int v;
for(int i=cur[u]; i!=-1; i=edg[i].next){
v=edg[i].to;
if(edg[i].cap>0 && dis[u]==dis[v]+1){
flag=true;
cur[u]=pre[v]=i;
break;
}
}
if(flag){
u=v;
continue;
}
//假设上面没有找到一个可流的相邻点。则改变出发点u的距离(也可觉得是高度)为相邻可流点的最小距离+1
int Mind= n;
for(int i=head[u]; i!=-1; i=edg[i].next)
if(edg[i].cap>0 && Mind>dis[edg[i].to]){
Mind=dis[edg[i].to];
cur[u]=i;
}
gap[dis[u]]--;
if(gap[dis[u]]==0) return ans; //当dis[u]这样的距离的点没有了,也就不可能从源点出发找到一条增广流路径
//由于汇点到当前点的距离仅仅有一种,那么从源点到汇点必定经过当前点。然而当前点又没能找到可流向的点,那么必定断流
dis[u]=Mind+1;//假设找到一个可流的相邻点。则距离为相邻点距离+1,假设找不到,则为n+1
gap[dis[u]]++;
if(u!=sNode) u=edg[pre[u]^1].to; //退一条边
}
return ans;
}
bool flag[MAXM] , SF[MAXN] , TF[MAXN];
void bfs(int s ,bool flag)
{
queue<int>q;
int u , v;
q.push(s );
while(!q.empty())
{
u = q.front(); q.pop();
for(int i=head[u]; ~i ; i=edg[i].next)
{
v=edg[i].to;
if(flag)
{
if(SF[v]||!edg[i].cap)continue;
SF[v]=1;
q.push(v);
}
else{
if(TF[v]||!edg[i^1].cap)continue;
TF[v]=1;
q.push(v);
}
}
}
}
inline void scanf(int& num )
{
char ch;
while(ch=getchar())
{
if(ch>='0'&&ch<='9')break;
}
num = ch-'0';
while(ch=getchar())
{
if(ch<'0'||ch>'9')break;
num = num*10+ch-'0';
}
}
int main()
{
int n,m,vs , vt , u ,v; while(scanf("%d%d%d%d",&n,&m,&vs,&vt)>0&&n+m+vs+vt!=0)
{
init();
for(int i=0; i<m; i++)
{
scanf(u);
scanf(v);
addEdg(u , v ,1);
}
memset(flag , 0 , (m+3)*sizeof(bool));
memset(SF,0,sizeof(SF));
memset(TF,0,sizeof(TF));
int ans , k=0 ;
ans = maxFlow_sap(vs , vt , n );
for(int i=0; i<m; i++)
if(edg[i<<1].cap==0)
flag[i]=1;
SF[vs ] =1; bfs(vs , 1);
TF[vt] = 1; bfs(vt , 0); for(int i=0; i<m; i++)
if(!flag[i]){
v=edg[i<<1|1].to;
u=edg[i<<1].to; if(SF[u]&&TF[v])
k++;
}
if(k) ans++;
printf("%d %d\n",ans , k);
}
}

HNU 13411 Reverse a Road II(最大流+BFS)经典的更多相关文章

  1. 【leetcode】Reverse Linked List II

    Reverse Linked List II Reverse a linked list from position m to n. Do it in-place and in one-pass. F ...

  2. 14. Reverse Linked List II

    Reverse Linked List II Reverse a linked list from position m to n. Do it in-place and in one-pass. F ...

  3. 【原创】Leetcode -- Reverse Linked List II -- 代码随笔(备忘)

    题目:Reverse Linked List II 题意:Reverse a linked list from position m to n. Do it in-place and in one-p ...

  4. 92. Reverse Linked List II

    题目: Reverse a linked list from position m to n. Do it in-place and in one-pass. For example:Given 1- ...

  5. lc面试准备:Reverse Linked List II

    1 题目 Reverse a linked list from position m to n. Do it in-place and in one-pass. For example:Given 1 ...

  6. 【LeetCode练习题】Reverse Linked List II

    Reverse Linked List II Reverse a linked list from position m to n. Do it in-place and in one-pass. F ...

  7. [Linked List]Reverse Linked List,Reverse Linked List II

    一.Reverse Linked List  (M) Reverse Linked List II (M) Binary Tree Upside Down (E) Palindrome Linked ...

  8. LeetCode之“链表”:Reverse Linked List && Reverse Linked List II

    1. Reverse Linked List 题目链接 题目要求: Reverse a singly linked list. Hint: A linked list can be reversed ...

  9. 4990: [Usaco2017 Feb]Why Did the Cow Cross the Road II 线段树维护dp

    题目 4990: [Usaco2017 Feb]Why Did the Cow Cross the Road II 链接 http://www.lydsy.com/JudgeOnline/proble ...

随机推荐

  1. Java 反射调用的一种优化

    写一些Java框架的时候,经常需要通过反射get或者set某个bean的field,比较普通的做法是获取field后调用java.lang.reflect.Field.get(Object),但每次都 ...

  2. [Atcoder SHPC2018] Tutorial

    Link: SHPC2018 传送门 C: 一道看上去有些吓人的题目,不过$1e9$规模下的$n^m$代表肯定是可以约分的 可以发现能提供贡献的数对只有$2*(n-d)$种,那么总贡献为$2*(n-d ...

  3. small test on 5.30 night T2

    (题面写错了,应该是一条从b -> a 的边) 让我们设状态 (a,b,c) 表示存在一个点k,使得  dist(k,b) - dist(k,a) * 2 + 3 = c,显然这里的第三维可以压 ...

  4. 【DFS】Codeforces Round #398 (Div. 2) C. Garland

    设sum是所有灯泡的亮度之和 有两种情况: 一种是存在结点U和V,U是V的祖先,并且U的子树权值和为sum/3*2,且U不是根,且V的子树权值和为sum/3. 另一种是存在结点U和V,他们之间没有祖先 ...

  5. 【后缀数组】poj3693 Maximum repetition substring

    sa在清空方面存在一些奇怪的问题……难以ac.(留坑?)

  6. 【转载】【bitset】C++ STL bitset 使用总结

    C++ bitset类的使用与简介 有些程序要处理二进制位的有序集,每个位可能包含的是0(关)或1(开)的值.位是用来保存一组项或条件的yes/no信息(有时也称标志)的简洁方法.标准库提供了bits ...

  7. Mac SublimeREPL 插件安装使用及解决各种坑

    虽然网上教程一大堆,然而都不全面,遇到的各种坑的情况都没写. 一.安装 前提是你安装了Package Control,见Mac Sublime Text 3 配置Python环境及安装插件 Prefe ...

  8. ntp流量放大攻击分析

    最近,听说挂在网络上的设备进行时间同步成功率低,YS需要架设自己的NTP服务器,这玩意第一时间能让人想到NTP流量放大攻击,这也是一种比较古老的攻击方式,检测了一下发现所使用的OS默认已经进行了加固, ...

  9. Telnet协议详解

    转:http://www.cnblogs.com/dazhaxie/archive/2012/06/27/2566054.html 1. 概述 Telnet协议是TCP/IP协议族中的一员,是Inte ...

  10. Redis编程实践【pub/sub】

    原文:http://shift-alt-ctrl.iteye.com/blog/1867454 Redis或许已经在很多企业开始推广并试水,本文也根据个人的实践,简单描述一下Redis在实际开发过程中 ...