Description

题库链接

给定一个 \(N\) 个点 \(M\) 条边的有向无环图,每条边长度都是 \(1\)。请找到一个点,使得删掉这个点后剩余的图中的最长路径最短。

\(1\leq N\leq 500 000,1\leq M\leq 1 000 000\)

Solution

比较神...

值得注意的是,对于一张 \(\text{DAG}\) 的拓扑序,任意从中截断那么前一部分以及后一部分的点都是连续的。

考虑按拓扑序来做,我们需要维护的就只是左边一部分内的最长路,以及右边一部分内的最长路。

除此之外还要维护经过被“割开”边的最长路。

对于删除一个点,我们需要做的就是将“割边”转移,维护上述需要维护的信息。

可以用可删除的堆来实现,不过考虑到空间的花销,用权值线段树可以实现同样的功能。

Code

#include <bits/stdc++.h>
using namespace std;
const int N = 500000+5, inf = ~0u>>1; int n, m, u, v, c1[N], c2[N], q[N];
struct graph {
struct tt {int to, next; }edge[N<<1];
int path[N], top, in[N];
void add(int u, int v) {edge[++top] = (tt){v, path[u]}, path[u] = top, ++in[v]; }
void topsort(int* c, int flag) {
queue<int>Q; int cnt = 0;
for (int i = 1; i <= n; i++) if (!in[i]) Q.push(i);
while (!Q.empty()) {
int u = Q.front(); Q.pop(); if (flag) q[++cnt] = u;
for (int i = path[u]; i; i = edge[i].next) {
--in[edge[i].to]; c[edge[i].to] = max(c[edge[i].to], c[u]+1);
if (in[edge[i].to] == 0) Q.push(edge[i].to);
}
}
}
}g1, g2;
struct Segment_tree {
#define lr(o) (o<<1)
#define rr(o) (o<<1|1)
int mx[N<<2], cnt[N<<2];
Segment_tree() {memset(mx, -1, sizeof(mx)); }
void modify(int o, int l, int r, int loc, int key) {
if (l == r) {
cnt[o] += key;
if (cnt[o] == 1) mx[o] = l;
else if (cnt[o] == 0) mx[o] = -1;
return;
}
int mid = (l+r)>>1;
if (loc <= mid) modify(lr(o), l, mid, loc, key);
else modify(rr(o), mid+1, r, loc, key);
mx[o] = max(mx[lr(o)], mx[rr(o)]);
}
}T; void work() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; i++) {
scanf("%d%d", &u, &v); g1.add(u, v), g2.add(v, u);
}
g1.topsort(c1, 1), g2.topsort(c2, 0);
int ans = inf, pos;
for (int i = 1; i <= n; i++) T.modify(1, 0, n, c2[i], 1);
for (int id = 1; id <= n; id++) {
int u = q[id];
for (int i = g2.path[u]; i; i = g2.edge[i].next)
T.modify(1, 0, n, c2[u]+c1[g2.edge[i].to]+1, -1);
T.modify(1, 0, n, c2[u], -1);
if (T.mx[1] < ans) ans = T.mx[1], pos = u;
for (int i = g1.path[u]; i; i = g1.edge[i].next)
T.modify(1, 0, n, c1[u]+c2[g1.edge[i].to]+1, 1);
T.modify(1, 0, n, c1[u], 1);
}
printf("%d %d\n", pos, ans);
}
int main() {work(); return 0; }

[POI 2014]RAJ-Rally的更多相关文章

  1. bzoj 3522 / 4543 [POI 2014] Hotel - 动态规划 - 长链剖分

    题目传送门 bzoj 3522 需要root权限的传送点 bzoj 4543 快速的传送点 慢速的传送点 题目大意 给定一棵树,问有多少个无序三元组$(x, y, z)$使得这三个不同点在树上两两距离 ...

  2. 解题:POI 2014 Ant colony

    题面 既然我们只知道最后数量为$k$的蚂蚁会在特殊边上被吃掉,不妨逆着推回去,然后到达每个叶节点的时候就会有一个被吃掉的蚂蚁的区间,然后二分一下就好啦 #include<cstdio> # ...

  3. POI 2014 HOTELS (树形DP)

    题目链接 HOTELS 依次枚举每个点,以该点为中心扩展. 每次枚举的时候,从该点的儿子依次出发,搜完一个儿子所有的点之后进行答案统计. 这里用了一个小trick. #include <bits ...

  4. [POI 2014] Couriers

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=3524 [算法] 首先离线 , 将询问按右端点排序 如果我们知道[l , r]这个区间 ...

  5. [POI 2014] Little Bird

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=3831 [算法] 单调队列优化动态规划 时间复杂度 : O(N) [代码] #incl ...

  6. bzoj 3872 [ Poi 2014 ] Ant colony —— 二分

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3872 从食蚁兽所在的边向叶节点推,会得到一个渐渐放大的取值区间,在叶子节点上二分有几群蚂蚁符 ...

  7. [POI 2014]PTA-Little Bird

    Description 题库连接 给你 \(n\) 棵树,第 \(i\) 棵树的高度为 \(d_i\).有一只鸟从 1 号树出发,每次飞跃不能超过 \(k\) 的距离.若飞到下一棵树的高度大于等于这一 ...

  8. Solution -「POI 2014」「洛谷 P5904」HOT-Hotels 加强版

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个点的树,求无序三元组 \((u,v,w)\) 的个数,满足其中任意两点树上距离相等.   \(n\le1 ...

  9. POI题解整合

    我也不知道为啥我就想把POI的题全都放到一篇blog里写完. POI 2005 SAM-Toy Cars 贪心,每次选下次出现最晚的. POI 2006 KRA-The Disks 箱子位置单调,所以 ...

随机推荐

  1. Facebook支撑万亿Post搜索背后的技术窥探

    转自http://www.csdn.net/article/2013-10-29/2817333-under-the-hood-building-posts-search 近日,Facebook为po ...

  2. CentOS7查看CPU个数

    查看逻辑cpu个数:cat /proc/cpuinfo | grep "processor" | wc -l 查看物理cpu个数:cat /proc/cpuinfo | grep ...

  3. vs 2015 结合新配置的IIS 发布网站过程中遇到的问题及解决办法?

    1.由于扩展配置问题而无法提供您请求的页面.如果该页面是脚本,请添加处理程序 错误: HTTP 错误 404.3 - Not Found 由于扩展配置问题而无法提供您请求的页面.如果该页面是脚本,请添 ...

  4. CSS/CSS3

    CSS/CSS3 选择器. 选择器 例子 例子描述 CSS 说明 .class .intro 选择 class="intro" 的所有元素. 1 #id #firstname 选择 ...

  5. 2D Polygons( Poygon) CGAL 4.13 -User Manual

    1 Introduction A polygon is a closed chain of edges. Several algorithms are available for polygons. ...

  6. win 10 mysql8.0安装

    1.解压缩安装包(记住自己的解压到那个目录,后面需要) 2.找到此电脑,然后找到属性(小编这里win10) 3.点击左侧高级系统设置 4.选择下面的环境变量 5.选择下面的新建,然后看图片,上面输入M ...

  7. item style edit in sharepoint 2013

    标题头添加属性:(如果需要使用ddwrt)xmlns:ddwrt="http://schemas.microsoft.com/WebParts/v2/DataView/runtime&quo ...

  8. Spring 开发第一步

    经过今天上午的学习发现spring上手开发一个"hello world"真的非常简单. 开发环境搭建: 1.去spring官网下载spring-framework-3.2.11.R ...

  9. AGC002F Leftmost Ball

    题目传送门 Description \(n\)种颜色的球,每种\(k\)个,\((n,k\leq 2000)\)将\(n\cdot k\)个球排成一排,把每种颜色最左边的那个涂成白色(初始不含白色), ...

  10. 《Python绝技:运用Python成为顶级黑客》 用Python实现免杀

    1.免杀的过程: 使用Metasploit生成C语言风格的一些shellcode作为载荷,这里使用Windows bindshell,功能为选定一个TCP端口与cmd.exe进程绑定在一起,方便攻击者 ...