BG.Hive - part3
1. Hive数据导入 - Load
Load,加载,不会进行任何数据转换和处理的操作,只会进行数据Move操作,将元数据移动到HDFS指定目录
a> hdfs dfs -put 'hdfs的hive目录'
b> LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION(partcol1=val1,partcol2=val2...)]
filepath: 要加载的数据文件路径,可以是相对路径,也可以是绝对路径,或者hdfs url;filepath为文件则移动文件,如果是目录,则将该目录下所有的文件移动到目标目录(表/分区)
LOCAL: 要加载的文件为本地文件 (file:///user/hive/...)
OVERWRITE: 目标目录(表/分区)下的数据会全部删除,然后覆盖;没有改关键字,则是增加的模式;
vim load.txt #创建本地文件, 数据如下
1,Niko,Shanghai,2016-01-01
2,Jim,Beijing,2017-01-01
3,Ye,GuangZhou,2018-01-01
hive> create table loaddata(id int, name string, city string, createdate date) #在Hive中创建表
> row format delimited
> fields terminated by ','
> stored as textfile;
hive> load data local inpath '/root/load.txt' into table loaddata; #Load本地文件到表中
hive> load data inpath 'file:///root/load.txt' into table loaddata; #使用权全路径加载本地文件
hive> select * from loaddata; #查询loaddata表,数据已经导入,由于前面2次都没有使用overwrite,可以发现,表中有6条数据
hive> load data local inpath '/root/load.txt' overwrite into table loaddata; #通过overwrite加载数据,成功后会发现loaddata表只有3条数据。之前的数据被清除了
hive> truncate table loaddata; #清空表
hdfs dfs -put load.txt '/user/hive/'
hive> load data inpath '/user/hive/load.txt' into table loaddata; #由hdfs加载数据到loaddata表
hive> load data inpath 'hdfs://bigdata.hadoop.master:9000/user/hive/load.txt' into table loaddata; #使用hdfs全uri指定文件进行导入
hdfs dfs -mkdir /user/hive/loadfolder #在hdfs中创建目录
hdfs dfs -cp file:///root/load.txt '/user/hive/loadfolder/load1.txt' #将本地文件复制到hdfs
hdfs dfs -cp file:///root/load.txt '/user/hive/loadfolder/load2.txt' #将本地文件复制到hdfs,生成2份
hive> load data inpath '/user/hive/loadfolder/' into table loaddata; #将hdfs目录作为路径到如Hive,会发现该目录下的2个文件数据都已经导入了Hive表中。并在Hive的目录下生成了2个文件。
2. Hive数据导入 - Insert
INSERT OVERWRITE #覆盖目标表,immutable不限制
INSERT INTO #向目标表appent,immutable限制
hive> create table insertdata like loaddata; #创建表
hive> alter table insertdata set tblproperties ('immutable'='true'); #将insertable的数据设置为不可变
immutable,当设置为true时,表中存在数据,不允许在修改数据;表中没有数据时,可以新增数据
hive> insert into insertdata select * from loaddata; #在insertdata没有数据的情况下,该语句执行成功
hive> insert into insertdata select * from loaddata; #再次执行,FAILED: SemanticException [Error 10256]: Inserting into a non-empty immutable table is not allowed insertdata
hive> insert overwrite table insertdata select * from loaddata; #Overwrite,在inserttable中有数据的情况下也能执行
hive> from loaddata insert overwrite table insertdata select *; #from在前面,overwrite
hive> from loaddata insert into insertdata select *; #from在前面,into;需要先关闭immutable
hive> create table insertdata2 like loaddata; #在创建一个表
hive> from loaddata #使用from同时向多张表插入数据
> insert overwrite table insertdata select *
> insert into table insertdata2 select *;
3. Hive数据导出
导出到本地文件系统
导出到HDFS
Hive -e 或 -f,导入到其他表
hive> insert overwrite local directory '/root/loadexport' select * from loaddata; #将loaddata表数据导入到本地文件
hive> insert overwrite directory '/user/hive/loadexport' select * from loaddata; #导出到HDFS,字段分隔符为^A
hive -e 'select * from loaddata'; #将查询结果进行显示
hive -e 'select * from loaddata' >> loaddatae.txt; #通过>>管道符,将查询结果写入loaddata.txt文件;>>代表追加;>代表覆盖;字段间分割符为Tab
vim loaddata_query.hql #编写查询语句的文件,内容为 use hellohive (\n) select * from loaddata;
hive -f loaddata_query.hql > loaddatae.txt; #通过hive-f的方式,将查询结果覆盖到loaddatae.txt文件
4. Hive复杂类型
数组,ARRAY<date_type>:有顺序的并且数组元素都必须是相同的数据类型,由0开始索引
键值对,MAP<primitive_type,data_type>:例如map<int,string>
结构体,STRUCT<col_name1:data_type,col_name2:data_type...>
联合体,UNIONTYPE<data_type,data_type...>
fields terminated by: 字段间分隔符(默认\001 ^A);collection items terminated by: 集合元素间分隔符(默认\002 ^B);map keys terminated by: map键值间分隔符(默认\003 ^C);lines terminated by: 行分隔符(默认\n)
hive> create external table if not exists vendor( #创建表--复杂数据类型
> id int comment '供应商ID',
> name string comment '供应商名称',
> contacter array<string> comment '联系人',
> productline map<string,double> comment '产品线和产品价格',
> address struct<country:string,city:string,zip:int> comment '地址(国家,城市,邮编)'
> )
> row format delimited
> fields terminated by ','
> collection items terminated by ' '
> map keys terminated by ':'
> lines terminated by '\n'
> stored as textfile;
创建数据文件,vendorrecord.txt
1,VendorA,Name1 Name2 Name3,P1:100.0 P2:200.0 P3:50,CN Shanghai 200000
2,VendorB,Name1 Name2 Name3,P1:1000 P2:20 P3:80,CN Beijing 100000
3,VendorC,Name100 Name200 Name300,P100:3 P200 33.8,CN Shanghai 200000
导入数据到vendor表
hive> load data local inpath '/root/vendorrecord.txt' into table vendor;
hive> select * from vendor; #查询导入的数据,结果如下
OK
1 VendorA ["Name1","Name2","Name3"] {"P1":100.0,"P2":200.0,"P3":50.0} {"country":"CN","city":"Shanghai","zip":200000}
2 VendorB ["Name1","Name2","Name3"] {"P1":1000.0,"P2":20.0,"P3":80.0} {"country":"CN","city":"Beijing","zip":100000}
3 VendorC ["Name100","Name200","Name300"] {"P100":3.0,"P200":null,"33.8":null} {"country":"CN","city":"Shanghai","zip":200000}
Time taken: 1.752 seconds, Fetched: 3 row(s)
hive> select contacter from vendor; #查询联系人 数组
hive> select contacter[0] from vendor; #查询每条记录的第一个联系人 数组下标 数组
hive> select size(contacter) from vendor; #查询每条记录的联系人个数 数据元素个数 数组
hive> select array_contains(contacter,'Name1') from vendor; #查询每条记录的联系人是否包含某个名称 判断数组是否包含某个元素,返回值为true,false 数组
hive> select sort_array(contacter) from vendor; #查询每条记录时对联系人进行排序 数组排序 数组
hive> select productline from vendor; #查看产品线
hive> select productline['P1'] from vendor; #查看某个产品的所有价格 MAP根据Key查询Value MAP
hive> select size(productline) from vendor; #查看产品个数 MAP键值对个数 MAP
hive> select map_keys(productline) from vendor; #查看所有产品 查询MAP的所有key MAP
hive> select map_values(productline) from vendor; #查看所有产品价值 查询MAP的所有Value MAP
hive> select address.country from vendor; #查看所有记录所在的国家 查看STRUCT的某个属性 STRUCT
5. Hive常见优化
小文件合并
小文件过多,导致HDFS的NameNode负载过大;每个HDFS文件都在NameNode中会有对应的记录,NameNode是直接于在与内存中的
小文件过多,导致Metastore解析文件负担过大;
建议每次执行完一个SQL后就进行小文件合并;
扫描文件 -- 列剪裁
控制参数: hive.optimize.cp=true;
使用select具体的列代替select *
扫描文件 -- 分区剪裁
控制参数: hive.optimize.pruner=true;
在查询子句中使用分区字段当作查询条件
Join优化 -- 控制启动的Job个数
无论多少张表Join,如果Join的Key都一样,则都会合并为一个MR作业
Join优化 -- 左边表为小表
在Reduce阶段,Join左边的表会全部加载到内存;此原则不适用于mapjoin
Join优化 -- MapJoin
Join放生在Map端,无需Reduce任务;MapJoin绝对不存在数据倾斜;Map Join要求查询的表很小(通常小于100M)
select /*+mapjoin(a)*/ a.id,b.name from TableA a join TableB b on a.id=b.id
Group by优化
控制参数: hive.groupby.skewindata=true; 默认为false
主要优化数据倾斜问题
控制参数设置为true后,查询语句的执行计划会生成2个MR作业,第一个为预聚合,第二个是根据预聚合的结果进行最终聚合
空值:大量空值容易导致数据倾斜 => 数据预处理
6. UDFs
UDFs : User Defined Functions Inupt 1 Output 1
UDAF : User Defined Aggregation Function Input N Output 1
UDTF : User Defined Table- Generating Function Inpurt 1 Output N
内置UDF: string, Data ....
内置UDAF:Count, Sum, AVG ...
内置UDTF: Explode ...
自定义UDFs:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF
show functions; desc function year; desc function extended year;
UDF源码,insight.io 如(+)源码:https://www.insight.io/github.com/apache/hive/blob/master/ql/src/java/org/apache/hadoop/hive/ql/udf/generic/GenericUDFOPPlus.java
Group by 操作源码:https://www.insight.io/github.com/apache/hive/blob/master/ql/src/java/org/apache/hadoop/hive/ql/exec/GroupByOperator.java
a> 编写UDF函数的程序,并打成Jar包 b> 在Hive中使用add jar的方式安装该Jar包 c> 在Hive中调用该函数
编写UDF函数,输入身份证号,输出年龄
在ItelliJ IDEA中编写函数,代码如下;并生成Jar包(Project Structure => Artifacts => Add...)
import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.Text;
import java.util.Calendar;
import java.lang.*; public class getAgeFromId extends UDF {
Calendar cal = Calendar.getInstance();
int year = cal.get(Calendar.YEAR); public Text evaluate (Text s) throws Exception
{
if(s == null){return null;}
if(s.getLength() != 18)
{
throw new Exception("Exactly one argument is expected.");
}
int age = year - Integer.parseInt(s.toString().substring(6,10));
return new Text(Integer.toString(age));
}
}
hive> add jar /root/Hive_UDF.jar #在Hive中导入Jar包
hive> create temporary function getAge as 'getAgeFromId'; #根据自定义的函数在Hive中创建临时函数
hive> select getage('111222199001013333'); #测试自定义函数
上面由于时临时函数,当Hive重启后,该函数将不可用
解决方案:
vim /opt/hive-2.1.1/conf/.hiverc #将下面的语句写入hiverc文件; hiverc隐藏文件在每次Hive启动时,里面的每条语句都会被重新执行
add jar /root/Hive_UDF.jar
create temporary function getAge as 'getAgeFromId';
BG.Hive - part3的更多相关文章
- BG.Hive - part2
1. 将mysql的订单数据导入hive的分区表(桶.倾斜)[partition,bucket,skew] a> 在Hive中新建分区表 CREATE TABLE IF NOT EXISTS H ...
- BG.Hive - part1
1. Hive架构 What is hive? Facebook,https://en.wikipedia.org/wiki/Apache_Hive a> 一种工具,可以通过SQL轻松的访问数据 ...
- Hive的存储和MapReduce处理——数据清洗(Part3)
日期:2019.11.17 博客期:118 星期日 这几天在写程序的时候虚拟机崩了,无语~所以重新从最初的状态开始配环境,重新整理之前的所有代码程序.
- Hive内表和外表的区别
本文以例子的形式介绍一下Hive内表和外表的区别.例子共有4个:不带分区的内表.带分区的内表.不带分区的外表.带分区的外表. 1 不带分区的内表 #创建表 create table innerTabl ...
- hive Spark SQL分析窗口函数
Spark1.4发布,支持了窗口分析函数(window functions).在离线平台中,90%以上的离线分析任务都是使用Hive实现,其中必然会使用很多窗口分析函数,如果SparkSQL支持窗口分 ...
- hive(七)hive-运行方式、GUI接口、权限管理
1.Hive运行方式: 命令行方式cli:控制台模式 脚本运行方式(实际生产环境中用最多) JDBC方式:hiveserver2 web GUI接口 (hwi.hue等) 1.1Hive在CLI模 ...
- hive学习(二) hive操作
hive ddl 操作官方手册https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL hive dml 操作官方手 ...
- 初识Hadoop、Hive
2016.10.13 20:28 很久没有写随笔了,自打小宝出生后就没有写过新的文章.数次来到博客园,想开始新的学习历程,总是被各种琐事中断.一方面确实是最近的项目工作比较忙,各个集群频繁地上线加多版 ...
- Linux平台 Oracle 10gR2(10.2.0.5)RAC安装 Part3:db安装和升级
Linux平台 Oracle 10gR2(10.2.0.5)RAC安装 Part3:db安装和升级 环境:OEL 5.7 + Oracle 10.2.0.5 RAC 5.安装Database软件 5. ...
随机推荐
- js获取select下拉框的value值和text文本值
介绍一种取下拉框值以及绑定下拉框数据的方法 这里用到的jquery-ui-multiselect插件 1.前台html代码 <span class="ModuleFormFiel ...
- CSS2.1SPEC:视觉格式化模型之包含块
原汁原味的才是最有味道的,在阅读CSS标准时对这一点的体会更加深刻了,阅读文档后的一大感觉就是很多看上去理所应当的样式表现也都有了对应的支持机制.本文首先从包含块写起,一方面总结标准中相应的阐述,并且 ...
- TCP BBR - 一键开启脚本
这是秋水逸冰提供的TCP BBR一键开启脚本,脚本详细说明地址: https://teddysun.com/489.html 按照说明操作就可以了,注意问题:这个脚本获取有的时候可能有问题,如果提示脚 ...
- Django 项目中设置缓存
一.配置文件settings.py中 # 设置django缓存存放位置为redis数据库,并设置一个默认(default)选项,在redis中(配置文件/etc/redis/redis.conf)开启 ...
- Mac OSX sublime text2 各种快捷键
Mac 快捷键 https://support.apple.com/zh-cn/HT201236 Preferences -> Key Bindings - User [ { "key ...
- MySQL(分组、连表操作、备份数据库)
day58 分组 参考:https://www.cnblogs.com/xp796/p/5262187.html select dept, max(salary) from department gr ...
- Codeforces Round #427 (Div. 2) B. The number on the board
引子: A题过于简单导致不敢提交,拖拖拉拉10多分钟还是决定交,太冲动交错了CE一发,我就知道又要错过一次涨分的机会.... B题还是过了,根据题意目测数组大小开1e5,居然蒙对,感觉用vector更 ...
- 详述MySQL服务在渗透测试中的利用
本文作者:i春秋签约作家——Binghe 致力于书写ichunqiu社区历史上最长篇最细致最真实的技术复现文章. 文章目录: MySQL之UDF提权 MySQL之MOF提权 MySQL之常规写启动项提 ...
- Flask从入门到精通之Flask表单渲染成HTML
表单字段是可调用的,在模板中调用后会渲染成HTML.假设视图函数把一个NameForm 实例通过参数form 传入模板,在模板中可以生成一个简单的表单,如下所示: <form method=&q ...
- QuantLib 金融计算——基本组件之 Currency 类
目录 QuantLib 金融计算--基本组件之 Currency 类 概述 构造函数 成员函数 如果未做特别说明,文中的程序都是 python3 代码. QuantLib 金融计算--基本组件之 Cu ...