本系列文章由birdlove1987编写,转载请注明出处。

文章链接: http://blog.csdn.net/zhurui_idea/article/details/25339595

方位和角位移的基本概念

什么是方位、角位移?

直观的说,我们知道,物体的“方位”主要描写叙述物体的朝向,然而,“方向”和“方位”并不全然一样。向量有“方向”但没有“方位”,差别在于,当一个向量指向特定方向时,能够让向量自转,但向量却不会发生不论什么变化,由于向量的属性仅仅有大小,而没有厚度宽度

然而,当一个物体朝向特定的方向时,让它和上面向量一样自转,我们就会发现物体的方位改变了。

从技术角度来讲,这就说明在3D中,仅仅要用两个參数,就能用參数表示一个方向。可是,要确定一个方位,至少须要三个參数。

描写叙述物体的方位时,不能使用绝对量。方位是通过于相对已知方位的旋转来描写叙述的。旋转的量称作角位移。换句话说,在数学上描写叙述方位就等价于描写叙述角位移。

ps:我们用矩阵和四元数来表示角位移,用欧拉角来表示方位。

方位表示

矩阵形式

3D中,描写叙述坐标系中方位的一种方法就是列出这个坐标系的基向量,这些基向量是用其它的坐标系来描写叙述的。用这些基向量构成一个3x3矩阵,然后就能用矩阵形式来描写叙述方位。也就是说,能用一个旋转矩阵来描写叙述两个坐标系之间的相对方位,然后用这个旋转矩阵把一个坐标系中的向量转换到还有一个坐标系中。

矩阵形式的长处

1.能够马上进行向量的旋转

2.矩阵的形式被图形API所用

3.个角位移连接。

矩阵形式的缺点

1.矩阵占用很多其它的内存

2.难于使用,不太直观。

3.矩阵可能是病态的(数据冗余

四元数表示

四元数的“差”被定义为一个方位到还有一个方位的角位移。ps:上篇笔记中具体的记录的四元数的相关性质,这里就不在过多说明了。

四元数表示的长处

1.平滑插值。

2.高速连接和角位移求逆

3.能和矩阵形式高速转换。

4.仅有四个数,节省空间

四元数表示的缺点

1.比欧拉角略微大一些。

2.四元数可能不合法。

3.难于使用

欧拉角

历史渊源:欧拉角著名的数学家Leonhard Euler的名字命名,他证明了角位移序列等价于单个角位移。

欧拉角的基本思想是将角位移分解为绕三个相互垂直轴的三个旋转组成的序列。随意的三个轴和随意的序列都能够,但最有意义的是使用笛卡尔坐标系并按一定顺序所组成的旋转序列。

欧拉角表示角位移的长处

1.欧拉角对我们来说非常easy使用。

2.最简洁的表达方式。

3.随意三个数都是合法的。

欧拉角表示角位移的缺点:

1.给定的表达方式不唯一(旋转序列不唯一导致)。

2.两个角度间求插值很困难

各方法比較

任务/性质 矩阵 欧拉角 四元数
在坐标系间旋转点 不能(必须转换到矩阵) 不能(必须转换到矩阵)
连接或增量旋转 能,但比四元数慢,会有矩阵蠕变 不能 能,比矩阵块
插值 基本上不能 能,但可能遭遇万向锁 Slerp提供了平滑插值
易用程度
在内存或文件里的存储 9个数 3个数 4个数
对给定方位的表达式方式是否唯一 唯一 不唯一,对允许方位有无数种表示方法 不唯一,有两种表示方法,相互为负
可能导致非法 矩阵蠕变 随意三个数构成合法地欧拉角 可能出现差积累,从而产生非法的四元数

不同方位表示方法的建议

1.欧拉角最easy使用。

2.假设须要在坐标系之间转换向量,那么就选择矩阵形式

3.当须要大量保持方位数据时,就使用欧拉角四元数

4.平滑插值仅仅能用四元数来完毕。

  -End-

參考文献: (1)《3D Math Primer for Graphics and Game Development》

(2) 维基百科

3D数学读书笔记——3D中的方位与角位移的更多相关文章

  1. 3D数学读书笔记——四元数

    本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/25400659 什么是四元数 ...

  2. 3D数学读书笔记——矩阵基础

     本系列文章由birdlove1987编写,转载请注明出处.    文章链接:http://blog.csdn.net/zhurui_idea/article/details/24975031   矩 ...

  3. 3D数学读书笔记——矩阵基础番外篇之线性变换

    本系列文章由birdlove1987编写.转载请注明出处. 文章链接:http://blog.csdn.net/zhurui_idea/article/details/25102425 前面有一篇文章 ...

  4. 3D数学读书笔记——向量运算及在c++上的实现

     本系列文章由birdlove1987编写.转载请注明出处.     文章链接: http://blog.csdn.net/zhurui_idea/article/details/24782661   ...

  5. 3D数学读书笔记——多坐标系和向量基础

    本系列文章由birdlove1987编写,转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/24662453 第一个知识点 ...

  6. 3D数学读书笔记——矩阵进阶

    本系列文章由birdlove1987编写,转载请注明出处. 文章链接:http://blog.csdn.net/zhurui_idea/article/details/25242725 最终要学习矩阵 ...

  7. 3D数学学习笔记——笛卡尔坐标系

    本系列文章由birdlove1987编写.转载请注明出处. 文章链接: http://blog.csdn.net/zhurui_idea/article/details/24601215 1.3D数学 ...

  8. 《编写可维护的javascript》读书笔记(中)——编程实践

    上篇读书笔记系列之:<编写可维护的javascript>读书笔记(上) 上篇说的是编程风格,记录的都是最重要的点,不讲废话,写的比较简洁,而本篇将加入一些实例,因为那样比较容易说明问题. ...

  9. 《Android源代码设计模式解析》读书笔记——Android中你应该知道的设计模式

    断断续续的,<Android源代码设计模式解析>也看了一遍.书中提到了非常多的设计模式.可是有部分在开发中见到的几率非常小,所以掌握不了也没有太大影响. 我认为这本书的最大价值有两点,一个 ...

随机推荐

  1. 多线程 or I/O复用select/epoll

    1:多线程模型适用于处理短连接,且连接的打开关闭非常频繁的情形,但不适合处理长连接.线程模型默认情况下,在Linux下每个线程会开8M的栈空间,在TCP长连接的情况下,以2000/分钟的请求为例,几乎 ...

  2. 2016-2017-2 20155309南皓芯《java程序设计》第十周学习总结

    教材内容总结 网络编程 定义:网络编程就是在两个或两个以上的设备之间传输数据. 计算机网络概述: 网络编程的实质就是两个(或多个)设备(例如计算机)之间的数据传输. 网络中的每个设备都会有一个唯一的数 ...

  3. CVE-2011-0104 Microsoft Office Excel缓冲区溢出漏洞 分析

    漏洞简述   Microsoft Excel是Microsoft Office组件之一,是流行的电子表格处理软件.        Microsoft Excel中存在缓冲区溢出漏洞,远程攻击者可利用此 ...

  4. C#连接mariadb代码及方式

    不负责任的说MariaDb和MySQL很多都是通用的,因为来自同一个爹... 和MySQL连接方式差不多 首先配置好你的MariaDb,创建test数据库,在test里创建MyTable表,脚本如下( ...

  5. AutoCompleteTextView,Spinner,消息提示

    package com.example.wang.testapp2; import android.app.Notification; import android.app.NotificationM ...

  6. CCF CSP 201604-2 俄罗斯方块

    CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201604-2 俄罗斯方块 问题描述 俄罗斯方块是俄罗斯人阿列克谢·帕基特诺夫发明的一款休闲游 ...

  7. javascript 去除最后一个字符自定义的方法

    //公共去除最后字符方法 function dtrim(str, s){ var reg = eval("/"+s+"$/gi"); str=str.repla ...

  8. MFC+WinPcap编写一个嗅探器之六(分析模块)

    这一节是程序的核心,也是最复杂的地方 首先需要明白的一点是,一般对于一个有界面的程序来说,往往需要多线程.本程序中除了界面线程外,抓包需要另外创建一个新的线程.在写抓包函数之前,首先要将前面两个模块的 ...

  9. jenkins定时构建

    打开job的配置界面,在构建触发器栏下有Poll SCM(定时检查源码变更并构建)和Build periodically(周期进行项目构建,不关心源码是否变更) 定时构建语法: * * * * *(和 ...

  10. [CodeForces]CodeForces - 1025F Disjoint Triangles

    题意: 给出平面上n个点,问能在其中选出6个点,组成两个三角形,使得其互不相交 问有多少种选法 大致思路  考虑枚举一条直线,将所有得点分为左右两部分,其中有两个点在直线上, 以这两个点为顶点,分别统 ...