【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理
求一张有向图的强连通生成子图的数目对 $10^9+7$ 取模的结果。
题解
状压dp+容斥原理
设 $f[i]$ 表示点集 $i$ 强连通生成子图的数目,容易想到使用总方案数 $2^{sum[i]}$ 减去不为强连通图的方案数得到强连通图的方案数,其中 $sum[i]$ 表示点集 $i$ 中边的数目。
考虑什么样的图不是强连通图:缩点后入度为0的强连通分量对应的点集不是全集。
枚举这些入度为0的强连通分量对应的点集,由于无法保证只有这些点构成的入度为0的强连通分量,因此需要进一步容斥。推之可以发现容斥系数与这些点形成的强连通分量数目的奇偶性有关。
更具体来讲,形成奇数个强连通分量时容斥系数为正(即减去),形成偶数个强连通分量为负(即加上)。
设 $g[i]=i个点形成奇数个强连通分量的方案数-i个点形成偶数个强连通分量的方案数$ ,那么枚举 $i$ 中编号最小的点所在连通块 $i-j$ (即枚举剩下部分 $x$ 不与编号最小的点相连的强连通分量 $j$ ),则有 $g[i]=-\sum\limits_{j\subset x}f[i-j]·g[j]$ 。注意此时的 $g$ 不包含 $i$ 只形成一个强连通分量的情况,以便下面 $f$ 的容斥。
那么枚举钦定的入度为0的强连通分量 $j$ ,就有 $f$ 的转移:$f[i]=2^{sum[i]}-\sum\limits_{j\subset i}2^{sum[i]-w[j]}·g[j]$ ,其中 $w[j]$ 表示 $i$ 向 $j$ 连边的数目,表示钦定的点不能被连边,其它的随意连。
最后将只有一个强连通分量的方案 $f[i]$ 算进 $g[i]$ 。
答案就是 $f[2^n-1]$ 。
时间复杂度 $O(3^n)$
#include <cstdio>
#define N 32775
#define mod 1000000007
typedef long long ll;
int in[N] , out[N] , cnt[N] , sum[N] , w[N];
ll b[215] , f[N] , g[N];
void dfs(int i , int j)
{
if(i & (j - 1)) dfs(i , i & (j - 1));
w[j] = w[j - (j & -j)] + cnt[in[j & -j] & i];
}
int main()
{
int n , m , i , j , x , y;
scanf("%d%d" , &n , &m);
b[0] = 1;
for(i = 1 ; i <= m ; i ++ )
{
scanf("%d%d" , &x , &y) , x -- , y -- ;
in[1 << y] |= 1 << x , out[1 << x] |= 1 << y;
b[i] = b[i - 1] * 2 % mod;
}
for(i = 1 ; i < (1 << n) ; i ++ )
{
x = i - (i & -i) , cnt[i] = cnt[x] + 1 , sum[i] = sum[x] + cnt[in[i & -i] & i] + cnt[out[i & -i] & i] , f[i] = b[sum[i]];
dfs(i , i);
for(j = x ; j ; j = x & (j - 1)) g[i] = (g[i] - f[i ^ j] * g[j] % mod + mod) % mod;
for(j = i ; j ; j = i & (j - 1)) f[i] = (f[i] - b[sum[i] - w[j]] * g[j] % mod + mod) % mod;
g[i] = (g[i] + f[i]) % mod;
}
printf("%lld\n" , f[(1 << n) - 1]);
return 0;
}
【uoj#37/bzoj3812】[清华集训2014]主旋律 状压dp+容斥原理的更多相关文章
- 【UOJ#37】 [清华集训2014] 主旋律
题目链接 题目描述 给定一张强联通图,求有多少种边的存在情况满足图依然强联通. \(n\leq15\) Sol 首先正难则反,考虑用总数减去不强联通的. 考虑一张不强联通的图,缩点后一定是一个 DAG ...
- uoj#37. 【清华集训2014】主旋律(状压dp+容斥)
传送门 第一眼容斥,然后我就死活容不出来了-- 记\(f_i\)为点集\(i\)中的点强联通的方案数,那么就是总的方案数减去使\(i\)不连通的方案数 如果\(i\)不连通的话,我们可以枚举缩点之后拓 ...
- UOJ#37. 【清华集训2014】主旋律
题目大意: 传送门 题解: 神题……Orz. 首先正难则反. 设$f_S$表示选取点集状态为s时,这部分图可以构成非强联通图的方案数. 设$p_{S,i}$表示点集s缩点后有i个入度为0点的方案数,保 ...
- BZOJ3812 清华集训2014 主旋律
直接求出强联通生成子图的数量较难,不妨用所有生成子图的数量减去非强联通的. 非强联通生成子图在所点后满足编号最小的点所在的强联通分量不是全集. 由于$n$很小,我们可以考虑状态压缩. 对于点集$S$, ...
- 【bzoj2560】串珠子 状压dp+容斥原理
题目描述 有 $n$ 个点,点 $i$ 和点 $j$ 之间可以连 $0\sim c_{i,j}$ 条无向边.求连成一张无向连通图的方案数模 $10^9+7$ .两个方案不同,当且仅当:存在点对 $(i ...
- uoj 41 【清华集训2014】矩阵变换 婚姻稳定问题
[清华集训2014]矩阵变换 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://uoj.ac/problem/41 Description 给出 ...
- BZOJ2669 [cqoi2012]局部极小值 状压DP 容斥原理
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2669 题意概括 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所 ...
- 4455: [Zjoi2016]小星星|状压DP|容斥原理
OrzSDOIR1ak的晨神 能够考虑状压DP枚举子集,求出仅仅保证连通性不保证一一相应的状态下的方案数,然后容斥一下就是终于的答案 #include<algorithm> #includ ...
- UOJ#46. 【清华集训2014】玄学
传送门 分析 清华集训真的不是人做的啊嘤嘤嘤 我们可以考虑按操作时间把每个操作存进线段树里 如果现在点x正好使一个整块区间的右端点则更新代表这个区间的点 我们不难发现一个区间会因为不同的操作被分成若干 ...
随机推荐
- phpcms 容许英文目录有空格
在PHPCMS添加栏目里面,有个选项是 英文目录,这里目录可以用作伪静态功能.这么英文不能有空格等特殊字符.但是如果页面中需要引用包含空格的字符呢,例如,关于我们页面,我要显示英文about us.那 ...
- Pod的创建过程
Pod是kubernetes中最小的调度单位,里面包含多个容器,也是真正运行你服务的仓库,同一个pod中容器之间资源共享(IP .网络.cpu.mem.挂载目录等). 1. 准备一个yaml(RC/ ...
- django(新增model)No migrations to apply.
django 1.8版本,在models下新建一个class,无法在数据库创建新表的问题: - models.py class HostPwd(models.Model): hostname = mo ...
- Extreme Learning Machine 翻译
本文是作者这几天翻译的一篇经典的ELM文章,是第一稿,所以有很多错误以及不足之处. 另外由于此编辑器不支持MathType所以好多公式没有显示出来,原稿是word文档. 联系:250101249@qq ...
- 微软职位内部推荐-SW Engineer II for Enterprise Platform
微软近期Open的职位: Job posting title: SDE II Location: China, Beijing Group Overview Discovery & Colla ...
- 第十四次ScrumMeeting博客
第十四次ScrumMeeting博客 本次会议于12月3日(日)22时整在3公寓725房间召开,持续30分钟. 与会人员:刘畅.辛德泰.张安澜.方科栋. 1. 每个人的工作(有Issue的内容和链接) ...
- Xcode中的文件类型
文件类型 Xcode中的文件类型,总共4种类型: 1 普通文件(File) 2 Group(在Xcode中就是黄色的文件夹) 3 Folder(在Xcode中就是蓝色的文件夹) 4 Framework ...
- 20180711-统计PDB中的蛋白质种类、膜蛋白文件个数及信息等
20180710完成这份工作.简单,但是完成了还是很开心.在我尝试如何使用pickle保存数据后,尝试保存PDB文件中“HEADER”中的信息.文件均保存于实验室服务器(97.73.198.168)/ ...
- Scrum Meeting 10.31
成员 今日任务 明日任务 今日工作时长 徐越 整理开发文档,学习ip相关知识,学习servlet相关知识 代码迁移,学习数据库相关知识 5h 赵庶宏 学习学长的servlet代码 进行数据库的连接 4 ...
- No.1000_第五次团队会议
光辉的一夜 今夜注定是不平凡的一夜.是崔强同学伟大的一夜. 昨天因为实验室项目,我刚上完编译课就被学院叫走去做项目,当时我就很无奈,因为说好了要和崔强一起实现下午的前端,他写界面我写底层逻辑,这样我们 ...