题意:Ninian 的魔力可以在结界间传递。
结界中有 N 个光柱,第 i 个光柱的光压范围为 0~Ei 。魔力可以有 M 种传递,从光柱 Ai 传递到光柱 Bi ,花费时间 Ti 。
当魔力从光压为 S 传递并花费了 T 的时间后,就会衰减到光柱上光压为 S-T 处,S-T 不能为负。
Ninian 可以将魔力的光压花费 1 时间增加 1 或减少 1 ,当然魔力的光压不能超过光柱的光压范围,也不能小于 0 。
Ninian 的魔力初始在 1 号光柱,光压为 X 。
问 Ninian 的魔力到达第 N 个光柱且光压最大所需要的最少时间。

链接:点我

ans 因分为3个部分:1.中途增加光压的时间 2.中途减少光压的时间 3. 所有路程的总时间
发现没有增加光压的话,dist是递减的,如果把每个柱子的光压下限0去掉后,光压无论在何时加都是一样的
因为若从某刻光压小于等于0后,我们可以按需调整光压,不会出现降低光压这个操作,而不论如何最后的光压一定是h[n]
所以

1.光压无论在何时加都是一样的

而我们又发现在路径上减少1个光压和在光柱上人为调整1个光压的时间是一样的
光压差就是时间差
我们用dist[n]表示到点n时的光压

2.X-dist[终点]=中途减少光压的时间+所有路程的总时间

又由1得E[终点]-dist[终点]=中途增加光压的时间

这两个式子都是随着dist[终点]的递增而递减的
只要算出最大的dist[终点]即可,这就是为什么要用最短路

ans=(X-dist[终点])+(E[终点]-dist[终点)=X+E[终点]-2*dist[终点]

以上是某大牛的题解

ans=路上的消耗+总共需要充能多少

我自己的理解是dist表示从起始点中间也充能到某点的消耗

则x-dist[n]=路上的消耗

e[i]-dist[n]=总共需要充能多少

相加即为所求

 #include<cstdio>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int MAXN=;
const long long INF=0x3f3f3f3f;// >> 10^9*10^5
int H[MAXN];
long long dist[MAXN];
vector<int> to[MAXN],cost[MAXN];
struct Node{
long long d; //剩余能量
int v; //点编号
Node(long long dd,int vv)
{
d=dd;
v=vv;
}
friend bool operator<(Node a,Node b)
{
return a.d<b.d;
}
};
int main(){
/*#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
#endif*/
int N,M,X,A,B,T;
scanf("%d%d%d",&N,&M,&X); for(int i=;i<=N;i++) scanf("%d",&H[i]);
for(int i=;i<M;i++)
{
scanf("%d%d%d",&A,&B,&T);
to[A].push_back(B);
cost[A].push_back(T);
to[B].push_back(A);
cost[B].push_back(T);
}
for(int i=;i<=N;i++) dist[i]=-INF;
priority_queue<Node> q;
q.push(Node(X,)); while(!q.empty())
{
Node now=q.top();
q.pop();
if(dist[now.v]!=-INF) continue;
dist[now.v]=now.d;
for(int i=;i<to[now.v].size();i++)
{
int u=to[now.v][i];
int c=cost[now.v][i];
if(c>H[now.v]) continue;
q.push(Node(min(now.d-c,(long long)H[u]),u)); //任意时刻都能充能量,能量不能溢出
}
}
if(dist[N]==-INF) puts("-1");
else printf("%lld\n",X+H[N]-dist[N]*); return ;
}

vijos 1880 变形最短路的更多相关文章

  1. poj 1797(最短路变形)

    题目链接:http://poj.org/problem?id=1797 思路:题目意思很简单,n个顶点,m条路,每条路上都有最大载重限制,问1->n最大载重量.其实就是一最短路的变形,定义wei ...

  2. UVA 10537 The Toll! Revisited 过路费(最短路,经典变形)

    题意:给一个无向图,要从起点s运送一批货物到达终点e,每个点代表城镇/乡村,经过城镇需要留下(num+19)/20的货物,而经过乡村只需要1货物即可.现在如果要让p货物到达e,那么从起点出发最少要准备 ...

  3. 【最短路】Vijos P1046 观光旅游

    题目链接: https://vijos.org/p/1046 题目大意: 给n个点(n<=100),m条无向边(m<=10000),问这张图的最小环长度. (注意:无自环,同一个点对之间的 ...

  4. BZOJ 1880: [Sdoi2009]Elaxia的路线( 最短路 + dp )

    找出同时在他们最短路上的边(dijkstra + dfs), 组成新图, 新图DAG的最长路就是答案...因为两人走同一条路但是不同方向也可以, 所以要把一种一个的s,t换一下再更新一次答案 ---- ...

  5. Vijos 1006 晴天小猪历险记之Hill 单源单汇最短路

    背景 在很久很久以前,有一个动物村庄,那里是猪的乐园(^_^),村民们勤劳.勇敢.善良.团结-- 不过有一天,最小的小小猪生病了,而这种病是极其罕见的,因此大家都没有储存这种药物.所以晴天小猪自告奋勇 ...

  6. POJ-2253.Frogger.(求每条路径中最大值的最小值,最短路变形)

    做到了这个题,感觉网上的博客是真的水,只有kuangbin大神一句话就点醒了我,所以我写这篇博客是为了让最短路的入门者尽快脱坑...... 本题思路:本题是最短路的变形,要求出最短路中的最大跳跃距离, ...

  7. B - Frogger 最短路变形('最长路'求'最短路','最短路'求'最长路')

    http://poj.org/problem?id=2253 题目大意: 有一只可怜没人爱的小青蛙,打算去找他的女神青蛙姐姐,但是池塘水路不能走,所以只能通过蹦跶的形式到达目的地,问你从小青蛙到青蛙姐 ...

  8. POJ 3635 - Full Tank? - [最短路变形][手写二叉堆优化Dijkstra][配对堆优化Dijkstra]

    题目链接:http://poj.org/problem?id=3635 题意题解等均参考:POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]. 一些口胡: ...

  9. POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]

    题目链接:http://poj.org/problem?id=3635 Description After going through the receipts from your car trip ...

随机推荐

  1. Linux XOR.DDoS样本取证特征与清除

    一.取证特征 1)获取进程ID 使用top命令,查看占用内存率最高的十位随机名称进程名(示例:进程名pygdykcrqf) 2)获取进程对应路径 Linux 在启动一个进程时,系统会在/proc下创建 ...

  2. my.cnf 详解与优化【转】

    MySQL配置文件my.cnf 例子最详细翻译,可以保存做笔记用. #BEGIN CONFIG INFO#DESCR: 4GB RAM, 只使用InnoDB, ACID, 少量的连接, 队列负载大#T ...

  3. 关于mysql的wait_timeout参数 设置不生效的问题【转】

    关于wait_timeout 有一次去online set wait_timeout 的时候发现改了不生效,如下: mysql> show variables like 'wait_timeou ...

  4. sicily 1215. 脱离地牢

    Description 在一个神秘的国度里,年轻的王子Paris与美丽的公主Helen在一起过着幸福的生活.他们都随身带有一块带磁性的阴阳魔法石,身居地狱的魔王Satan早就想得到这两块石头了,只要把 ...

  5. error while loading shared libraries: libtest.so: cannot open shared object file: No such file or directory

    一般我们在Linux下执行某些外部程序的时候可能会提示找不到共享库的错误, 比如: tmux: error while loading shared libraries: libevent-1.4.s ...

  6. MySQL 导入CSV数据

    第一步 创建表结构 create table t1( key1 ), v1 ) ); 第二步 导入数据 load data local infile 'D:/t1.csv' into table t1 ...

  7. 十三、springboot集成定时任务(Scheduling Tasks)

    定时任务(Scheduling Tasks) 在springboot创建定时任务比较简单,只需2步: 1.在程序的入口加上@EnableScheduling注解. 2.在定时方法上加@Schedule ...

  8. java基础42 File类的构造函数及其方法

    本文知识点(目录): 1.IO流(Input Output)    2.IO流技术的运用场景    3.File类的构造函数(方法)    4.File类的一些常用方法    5.实例(解析File类 ...

  9. SpringCloud Config Bus webhook 只能刷新config server 不能刷新config client

    在 https://github.com/spring-cloud/spring-cloud-bus/issues/124 中有提到 版本 SpringCloud:Greenwich.RC1 原因 由 ...

  10. CCF CSP 201403-4 无线网络

    CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201403-4 无线网络 问题描述 目前在一个很大的平面房间里有 n 个无线路由器,每个无线路 ...