LintCode 158: Anagram

题目描述

写出一个函数anagram(s, t)判断两个字符串是否可以通过改变字母的顺序变成一样的字符串。

样例

给出s = "abcd"t="dcab",返回true.

给出s = "ab", t = "ab", 返回true.

给出s = "ab", t = "ac", 返回false.

Mon Mar 6 2017

思路

这道题很容易想到先将字符串排序,然后比较两个字符串是否相等,这种方法的时间复杂度为\(O(nlogn)\)。

但是题目中有更高的要求,要求时间复杂度为\(O(n)\),空间复杂度为\(O(1)\),所以需要借助哈希表统计各字符出现的次数。

分别统计两个字符串中各字符串出现的次数,若在字符串s出现过,则+1,若在字符串t出现过,则-1,最后检查次数是否全为0即可。

代码

// 两个字符串是变位词
class Solution {
public:
/**
* @param s: The first string
* @param b: The second string
* @return true or false
*/
bool anagram(string s, string t)
{
if(s.size() != t.size()) return false;
int count[256] = {0};
for (int i = 0; i < s.size(); ++i)
{
++count[s[i]];
--count[t[i]];
}
for (int i = 0; i < 256; ++i)
if (count[i] < 0)
return false;
return true;
}
};

LintCode 158: Anagram的更多相关文章

  1. 158. Valid Anagram【LintCode by java】

    Description Write a method anagram(s,t) to decide if two strings are anagrams or not. Clarification ...

  2. [LintCode]——目录

    Yet Another Source Code for LintCode Current Status : 232AC / 289ALL in Language C++, Up to date (20 ...

  3. [LeetCode] Valid Anagram 验证变位词

    Given two strings s and t, write a function to determine if t is an anagram of s. For example, s = & ...

  4. (lintcode全部题目解答之)九章算法之算法班题目全解(附容易犯的错误)

    --------------------------------------------------------------- 本文使用方法:所有题目,只需要把标题输入lintcode就能找到.主要是 ...

  5. Lintcode 85. 在二叉查找树中插入节点

    -------------------------------------------- AC代码: /** * Definition of TreeNode: * public class Tree ...

  6. Lintcode 166. 主元素

    ----------------------------------- Moore's voting algorithm算法:从一个集合中找出出现次数半数以上的元素,每次从集合中去掉一对不同的数,当剩 ...

  7. Lintcode 166. 链表倒数第n个节点

    ----------------------------------- 最开始的想法是先计算出链表的长度length,然后再从头走 length-n 步即是需要的位置了. AC代码: /** * De ...

  8. Lintcode 157. 判断字符串是否没有重复字符

    ------------------------ 因为字符究竟是什么样的无法确定(比如编码之类的),恐怕是没办法假设使用多大空间(位.数组)来标记出现次数的,集合应该可以但感觉会严重拖慢速度... 还 ...

  9. Lintcode 175. 翻转二叉树

    -------------------- 递归那么好为什么不用递归啊...我才不会被你骗...(其实是因为用惯了递归啰嗦的循环反倒不会写了...o(╯□╰)o) AC代码: /** * Definit ...

随机推荐

  1. mysql只修改年月日,时分秒不变

    比如时间为 “2014-12-11 13:12:01”修改为“2014-09-26 13:12::01”修改内容为修改yyyy-mm-dd为对应的日期,时间不变.UPDATE result_road_ ...

  2. php SPL标准库iterator和ArrayAccess的学习

    最近在补充学习php基础的时候看到了spl的介绍,学习了一下iterator和arrayAccess的使用,iterator主要是对象的迭代,一般可以用在容器里面,或者工厂模式里面,最常见的应用场景就 ...

  3. js & click copy to clipboard

    js & click copy to clipboard https://www.cnblogs.com/xgqfrms/p/9999061.html https://www.cnblogs. ...

  4. 利用userData实现客户端保存表单数据

    对于多数网页制作的朋友,实现在客户端保存在网页表单上的信息,比较多的是采用Cookie技术来实现,这些功能例如:下拉列表框选择的选项,文本框输入的数据等.事实上,我们可以利用微软DHTML默认行为中的 ...

  5. 把打印的内容保存成文件(PDF)

    有时候网页的内容和打印的内容会有一些差异,需要把打印的内容倒出来.是有办法的. 1.以谷歌为内核的浏览器示例,按Ctrl+p快捷键打开打印对话框,如图: 2.点击更改按钮,更改打印机,会出现选择目标打 ...

  6. C# 单例模式的多种简单实现

    什么是单例模式? 这里我就不做过多的解释了, 毕竟关于Singleton的资料实在是太多太多了.点击这里 1.简单的思路就是, 创建对象单例的动作转移到另外的行为上面, 利用一个行为去创建对象自身, ...

  7. 【转】LINQ多表关联关联条件

    转:http://www.dingcankong.com/linq%E4%B8%A4%E8%A1%A8%E8%81%94%E5%90%88%E6%9F%A5%E8%AF%A2/ 答案如下: var m ...

  8. 【BZOJ2839】集合计数(容斥,动态规划)

    [BZOJ2839]集合计数(容斥,动态规划) 题面 BZOJ 权限题 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使 ...

  9. 洛谷 P1850 换教室 解题报告

    P1850 换教室 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有\(2n\)节课程安排在\(n\)个时间段上.在第\(i(1≤i≤n) ...

  10. 单点登录(一)-----理论-----单点登录SSO的介绍和CAS+选型

    什么是单点登录(SSO) 单点登录主要用于多系统集成,即在多个系统中,用户只需要到一个中央服务器登录一次即可访问这些系统中的任何一个,无须多次登录. 单点登录(Single Sign On),简称为 ...