题目链接

loj2537

题解

观察题目的式子似乎没有什么意义,我们考虑计算出每一种权值的概率

先离散化一下权值

显然可以设一个\(dp\),设\(f[i][j]\)表示\(i\)节点权值为\(j\)的概率

如果\(i\)是叶节点显然

如果\(i\)只有一个儿子直接继承即可

如果\(i\)有两个儿子,对于儿子\(x\),设另一个儿子为\(y\)

则有

\[f[i][j] += f[x][j](1 - p_i)\sum\limits_{k > j}f[r][k] + f[x][j]p_i\sum\limits_{k < j}f[r][k]
\]

直接转移是\(O(n^2)\)的,发现每个节点都有\(O(n)\)个位置需要转移

考虑优化,可以考虑线段树合并

对于一个子树中的权值\(x\),我们记另一棵子树比它大的概率为\(maxa\),

则\(x\)的概率要乘上\(maxa(1 - p_i) + (1 - maxa)p_i = maxa + p_i - 2p_imaxa\)

所以我们在线段树合并过程中,优先合并右子树,并更新两棵子树的\(maxa\)与\(maxb\),就可以在合并过程中转移了

复杂度\(O(nlogn)\)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 300005,maxm = 8000005,INF = 1000000000,P = 998244353;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,Ls[maxn],Rs[maxn],b[maxn],N,v10000;
int rt[maxn],sum[maxm],ls[maxm],rs[maxm],tag[maxm],cnt;
int p[maxn],maxa,maxb;
inline int qpow(int a,int b){
int re = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) re = 1ll * re * a % P;
return re;
}
inline void pd(int u){
if (tag[u] > 1){
sum[ls[u]] = 1ll * sum[ls[u]] * tag[u] % P;
sum[rs[u]] = 1ll * sum[rs[u]] * tag[u] % P;
tag[ls[u]] = 1ll * tag[ls[u]] * tag[u] % P;
tag[rs[u]] = 1ll * tag[rs[u]] * tag[u] % P;
tag[u] = 1;
}
}
void modify(int& u,int l,int r,int pos){
u = ++cnt; sum[u] = tag[u] = 1;
if (l == r) return;
int mid = l + r >> 1;
if (mid >= pos) modify(ls[u],l,mid,pos);
else modify(rs[u],mid + 1,r,pos);
}
int merge(int u,int v,int p){
if (!u && !v) return 0;
if (!u){
maxb = (maxb + sum[v]) % P;
int tmp;
tmp = (((maxa + p) % P - 2ll * p * maxa % P) % P + P) % P;
sum[v] = 1ll * sum[v] * tmp % P;
tag[v] = 1ll * tag[v] * tmp % P;
return v;
}
if (!v){
maxa = (maxa + sum[u]) % P;
int tmp;
tmp = (((maxb + p) % P - 2ll * p * maxb % P) % P + P) % P;
sum[u] = 1ll * sum[u] * tmp % P;
tag[u] = 1ll * tag[u] * tmp % P;
return u;
}
pd(u); pd(v);
int t = ++cnt; tag[t] = 1;
rs[t] = merge(rs[u],rs[v],p);
ls[t] = merge(ls[u],ls[v],p);
sum[t] = (sum[ls[t]] + sum[rs[t]]) % P;
return t;
}
void dfs(int u){
if (!Ls[u]) modify(rt[u],1,N,p[u]);
else if (!Rs[u]) dfs(Ls[u]),rt[u] = rt[Ls[u]];
else {
dfs(Ls[u]); dfs(Rs[u]);
maxa = maxb = 0;
rt[u] = merge(rt[Ls[u]],rt[Rs[u]],p[u]);
}
}
int ans;
void cal(int u,int l,int r){
if (l == r) {ans = (ans + 1ll * l * b[l] % P * sum[u] % P * sum[u] % P) % P;return;}
pd(u);
int mid = l + r >> 1;
cal(ls[u],l,mid);
cal(rs[u],mid + 1,r);
}
int main(){
n = read(); read(); int x; v10000 = qpow(10000,P - 2);
for (int i = 2; i <= n; i++){
x = read();
if (!Ls[x]) Ls[x] = i;
else Rs[x] = i;
}
for (int i = 1; i <= n; i++){
p[i] = read();
if (!Ls[i]) b[++N] = p[i];
else p[i] = 1ll * p[i] * v10000 % P;
}
sort(b + 1,b + 1 + N);
for (int i = 1; i <= n; i++)
if (!Ls[i]) p[i] = lower_bound(b + 1,b + 1 + N,p[i]) - b;
dfs(1);
cal(rt[1],1,N);
printf("%d\n",ans);
return 0;
}

loj2537 「PKUWC2018」Minimax 【概率 + 线段树合并】的更多相关文章

  1. LOJ2537. 「PKUWC2018」Minimax【概率DP+线段树合并】

    LINK 思路 首先暴力\(n^2\)是很好想的,就是把当前节点概率按照权值大小做前缀和和后缀和然后对于每一个值直接在另一个子树里面算出贡献和就可以了,注意乘上选最大的概率是小于当前权值的部分,选最小 ...

  2. LOJ2537. 「PKUWC2018」Minimax [DP,线段树合并]

    传送门 思路 首先有一个\(O(n^2)\)的简单DP:设\(dp_{x,w}\)为\(x\)的权值为\(w\)的概率. 假设\(w\)来自\(v1\)的子树,那么有 \[ dp_{x,w}=dp_{ ...

  3. 「洛谷4197」「BZOJ3545」peak【线段树合并】

    题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...

  4. loj#2537. 「PKUWC2018」Minimax

    题目链接 loj#2537. 「PKUWC2018」Minimax 题解 设\(f_{u,i}\)表示选取i的概率,l为u的左子节点,r为u的子节点 $f_{u,i} = f_{l,i}(p \sum ...

  5. 「CQOI2006」简单题 线段树

    「CQOI2006」简单题 线段树 水.区间修改,单点查询.用线段树维护区间\([L,R]\)内的所有\(1\)的个数,懒标记表示为当前区间是否需要反转(相对于区间当前状态),下方标记时懒标记取反即可 ...

  6. BZOJ.5461.[PKUWC2018]Minimax(DP 线段树合并)

    BZOJ LOJ 令\(f[i][j]\)表示以\(i\)为根的子树,权值\(j\)作为根节点的概率. 设\(i\)的两棵子树分别为\(x,y\),记\(p_a\)表示\(f[x][a]\),\(p_ ...

  7. 【LOJ】#2537. 「PKUWC2018」Minimax

    题解 加法没写取模然后gg了QwQ,de了半天 思想还是比较自然的,线段树合并的维护方法我是真的很少写,然后没想到 很显然,我们有个很愉快的想法是,对于每个节点枚举它所有的叶子节点,对于一个叶子节点的 ...

  8. 「PKUWC2018」Minimax

    题面 题解 强势安利一波巨佬的$blog$ 线段树合并吼题啊 合并的时候要记一下$A$点权值小于$l$的概率和$A$点权值大于$r$的概率,对$B$点同样做 时空复杂度$\text O(nlogw)$ ...

  9. [PKUWC2018]Minimax [dp,线段树合并]

    好妙的一个题- 我们设 \(f_{i,j}\) 为 \(i\) 节点出现 \(j\) 的概率 设 \(l = ch[i][0] , r = ch[i][1]\) 即左儿子右儿子 设 \(m\) 为叶子 ...

随机推荐

  1. python函数之format

    自python2.6开始,新增了一种格式化字符串的函数str.format(),此函数可以快速处理各种字符串,它增强了字符串格式化的功能. 基本语法是通过{}和:来代替%.format函数可以接受不限 ...

  2. GO/GOLANG程序员笔记大全

    ---------------------------------------- go 并发 // 注解:go 语言天生为程序并发所设计,可以说go的强项就是在cpu并发上的处理. // go 语言层 ...

  3. linux磁盘扩容日志

    //针对ext4文件格式的操作系统(如CentOS6):// umount /dev/vdb e2fsck -f /dev/vdb resize2fs /dev/vdb mount /dev/vdb ...

  4. 在NodeJS中使用Redis缓存数据

    Redis数据库采用极简的设计思想,最新版的源码包还不到2Mb.其在使用上也有别于一般的数据库. node_redis redis驱动程序多使用 node_redis 此模块可搭载官方的 hiredi ...

  5. 从汉诺塔游戏理解python递归函数

    汉诺塔游戏规则: 有三根相邻的柱子,标号为A,B,C,A柱子上从下到上按金字塔状叠放着n个不同大小的圆盘,现在把所有盘子一个一个移动到柱子B上,并且每次移动同一根柱子上都不能出现大盘子在小盘子上方 图 ...

  6. 元素transform: rotate()之后,元素宽高该怎么计算?

    通常,利用transform: rotate()元素之后,我们并不会去在意元素大小的变化,因为看上去并没有什么变化.虽然看上去没有变化,其实是有变化的.下面用一个例子来说明一下. html: < ...

  7. 详解HTTP缓存

    HTTP缓存是个大公司面试几乎必考的问题,写篇随笔说一下HTTP缓存. 1. HTTP报文首部中有关缓存的字段 在HTTP报文中,与缓存相关的信息都存在首部里,简单说一下首部. 首部 HTTP首部字段 ...

  8. 实验三:敏捷开发与XP实践

    Java实验三报告 一.   实验内容 (一)敏捷开发与XP 内容:1.敏捷开发(Agile Development)是一种以人为核心.迭代.循序渐进的开发方法. 2.极限编程(eXtreme Pro ...

  9. 20135313-exp2

    北京电子科技学院(BESTI) 实     验    报     告 课程:Java程序设计 班级:1353 姓名:吴子怡(20135313) 成绩:           指导教师:娄嘉鹏  实验日期 ...

  10. java第三次试验报告

    北京电子科技学院(BESTI) 实     验    报     告 课程:Java程序设计   班级:1353       姓名:郭皓  学号:20135327 成绩:             指导 ...