simple-libfm-example-part1
原文:https://thierrysilbermann.wordpress.com/2015/02/11/simple-libfm-example-part1/
I often get email of people asking me how to run libFM and having trouble to understand the whole pipeline. If you are verse in Machine Learning, a first step is to take a look at Steffen Rendle’s paper ‘Factorization Machines‘ and this one too:Factorization Machines with libFM
I’ll try to explain how to train different kinds of models with the 4 different learning algorithms that libFM provides and use the features of libFM (like grouping and relations)
But first, here is a toy example of how each file should be. (Was posted in the libfm google group)
Simple example for 2 users and 3 items. We have 2 users, 3 items in our training set and now you want to test on the same 2 users, but now you have 4 items (the same 3 from training + one new))
Each user has a categorical feature age [“18-25”, “26-40”, “40-60”] and each item has a numerical feature price.
I one-hot encoded the users:
0 is User1
1 is User2
Same thing for items,
2 is Item1,
3 is Item2,
4 is Item3,
5 is Item4
The categorical feature age need to be one encoded too
6 is the category “18-25”,
7 is the category “26-40”,
8 is the category “40-60”
And finally the numerical feature price for the item
9 will represent the price feature
One sample can be:
5 0:1 3:1 6:1 9:20
#User1 who is 23yo is giving a rating of 5 on Item2 which costs 20 euros
We can then construct example and create a training and test set.
train.libfm
5 0:1 2:1 6:1 9:12.5
5 0:1 3:1 6:1 9:20
4 0:1 4:1 6:1 9:78
1 1:1 2:1 8:1 9:12.5
1 1:1 3:1 8:1 9:20
num_features = 10 #Computed on the highest integer value that represents a feature (here 9 for the Item price) + 1 (because we expect people to start at 0)
test.libfm
0 1:1 4:1 8:1 9:78
0 0:1 5:1 6:1
num_features = 10 #Computed on the highest integer value that represents a feature (here 9 for the Item price) + 1 (because we expect people to start at 0)
For the test, I have two samples I want prediction. The 0 doesn’t really have any effect in testing (Only useful if you have the true value, then libFM will output the RMSE error on it but will not use it to train the model)
Just to be sure, here is the meaning of those two samples in test:
0 1:1 4:1 8:1 9:78
#Here User2 who is 41yo is rating Item3 which costs 78 euros and we gave a rating of 0 because we don’t know yet the real rating0 0:1 5:1 6:1
#We want to know which rating User1 who is 23yo will give to a not-yet seen Item4 and we don’t know the price
This format is the same as for libSVM
From here you have two files: train.libfm and test.libfm (the extension doesn’t matter)
You can then run libFM like this for regression (predicting ratings):
./libfm -task r -method mcmc -train train.libfm -test test.libfm -iter 10 -dim ‘1,1,2’ -out output.libfm
So the model was train using [MCMC (-method mcmc)] on [10 (-iter 10)] iterations using a [linear model (+bias) and using factorization with 2 latent factors. (-dim ‘1,1,2’)]
You will then get some output out of the command line and prediction will be written in the file ‘output.libfm’
Discussions
This is of course a toy example but show you what you can use in libFM to train your model.
I wouldn’t recommand using the price feature like this but maybe do some transformation like log to avoid having a feature with large value but I hope you get the point.
simple-libfm-example-part1的更多相关文章
- PyNest——Part1:neurons and simple neural networks
neurons and simple neural networks pynest – nest模拟器的界面 神经模拟工具(NEST:www.nest-initiative.org)专为仿真点神经元的 ...
- [译] Extending jQuery Part1 Simple extensions
本章包含: JQuery 的起源和目标. 你能扩展JQuery 的那些部分. JQuery 扩展的实例. 如今,JQuery 已经是网络上最受欢迎的JavaScript Library. 1.1 jQ ...
- Linux平台 Oracle 10gR2(10.2.0.5)RAC安装 Part1:准备工作
Linux平台 Oracle 10gR2(10.2.0.5)RAC安装 Part1:准备工作 环境:OEL 5.7 + Oracle 10.2.0.5 RAC 1.实施前准备工作 1.1 服务器安装操 ...
- PHP设计模式(一)简单工厂模式 (Simple Factory For PHP)
最近天气变化无常,身为程序猿的寡人!~终究难耐天气的挑战,病倒了,果然,程序猿还需多保养自己的身体,有句话这么说:一生只有两件事能报复你:不够努力的辜负和过度消耗身体的后患.话不多说,开始吧. 一.什 ...
- Linux平台 Oracle 11gR2 RAC安装Part1:准备工作
一.实施前期准备工作 1.1 服务器安装操作系统 1.2 Oracle安装介质 1.3 共享存储规划 1.4 网络规范分配 二.安装前期准备工作 2.1 各节点系统时间校对 2.2 各节点关闭防火墙和 ...
- Design Patterns Simplified - Part 3 (Simple Factory)【设计模式简述--第三部分(简单工厂)】
原文链接:http://www.c-sharpcorner.com/UploadFile/19b1bd/design-patterns-simplified-part3-factory/ Design ...
- WATERHAMMER: A COMPLEX PHENOMENON WITH A SIMPLE SOLUTION
开启阅读模式 WATERHAMMER A COMPLEX PHENOMENON WITH A SIMPLE SOLUTION Waterhammer is an impact load that is ...
- BZOJ 3489: A simple rmq problem
3489: A simple rmq problem Time Limit: 40 Sec Memory Limit: 600 MBSubmit: 1594 Solved: 520[Submit] ...
- Le lié à la légèreté semblait être et donc plus simple
Il est toutefois vraiment à partir www.runmasterfr.com/free-40-flyknit-2015-hommes-c-1_58_59.html de ...
- ZOJ 3686 A Simple Tree Problem
A Simple Tree Problem Time Limit: 3 Seconds Memory Limit: 65536 KB Given a rooted tree, each no ...
随机推荐
- python中%r和%s的区别
%r用rper()方法处理对象 %s用str()方法处理对象 有些情况下,两者处理的结果是一样的,比如说处理int型对象. 例一: print "I am %d years old.&quo ...
- ubuntu python opencv3 cv2.cv2 has no attribute 'face' 'cv2.face' has no attribute 'createEigenFaceRecognizer'
学习opencv过程中遇到错误: 1 cv2.cv2 has no attribute 'face' 经过一顿查,,,各种走弯路 最后一下子就解决了: pip install opencv-pyth ...
- android viewHolder static 静态
韩梦飞沙 韩亚飞 313134555@qq.com yue31313 han_meng_fei_sha 不是静态内部类 会 持有 外部类的 引用. 就像经常自定义的 适配器 类 作为内部类 ...
- POJ1151 Atlantis 水题 计算几何
http://poj.org/problem?id=1151 想学一下扫描线线段树,结果写了道水题. #include<iostream> #include<cstdio> # ...
- bzoj 3545/3551: [ONTAK2010]Peaks -- 主席树,最小生成树,倍增
3545: [ONTAK2010]Peaks Time Limit: 10 Sec Memory Limit: 128 MB Description 在Bytemountains有N座山峰,每座山峰 ...
- win7 64位安装pywin32
先安装pywin32-218.win-amd64-py3.4.exe文件: 安装完成后,用CMD管理员模式进入\Python34\Scripts\目录 输入pywin32_postinstall.py ...
- Linux常用命令&定位生产报错日志
1. cd / 到根目录下 2. cd .. 返回上层目录 3.ls 显示当前目录有哪些文件 4. pwd 显示当前目录 5. ps -ef|grep tomcat7 查看当前运行进程 6. kill ...
- Redis在Windows+linux平台下的安装配置(转)
window平台Redis安装 下载地址: http://code.google.com/p/servicestack/wiki/RedisWindowsDownload Redis文件夹有以下几个文 ...
- Polly简介 — 1. 故障处理策略
Polly 是 .Net 下的一套瞬时故障处理及恢复的函式库,可让开发者以fluent及线程安全的方式来应用诸如Retry.Circuit Breaker.Timeout.Bulkhead Isola ...
- sqlserver存储过程循环写法
用游标,和WHILE可以遍历您的查询中的每一条记录并将要求的字段传给变量进行相应的处理==================DECLARE @A1 VARCHAR(10),@A2 VARCHAR(10) ...