BZOJ 1719--[Usaco2006 Jan] Roping the Field 麦田巨画(几何&区间dp)
1719: [Usaco2006 Jan] Roping the Field 麦田巨画
Time Limit: 5 Sec Memory Limit: 64 MB
Submit: 82 Solved: 26
[Submit][Status][Discuss]
Description
Farmer John is quite the nature artist: he often constructs large works of art on his farm. Today, FJ wants to construct a giant "field web". FJ's field is large convex polygon with fences along the boundary and fence posts at each of the N corners (1 <= N <= 150). To construct his field web, FJ wants to run as many ropes as possible in straight lines between pairs of non-adjacent fence posts such that no two ropes cross. There is one complication: FJ's field is not completely usable. Some evil aliens have created a total of G (0 <= G <= 100) grain circles in the field, all of radius R (1 <= R <= 100,000). FJ is afraid to upset the aliens, and therefore doesn't want the ropes to pass through, or even touch the very edge of a grain circle. Note that although the centers of all the circles are contained within the field, a wide radius may make it extend outside of the field, and both fences and fence posts may be within a grain circle. Given the locations of the fence posts and the centers of the circles, determine the maximum number of ropes that FJ can use to create his field web. FJ's fence posts and the circle centers all have integer coordinates X and Y each of which is in the range 0..1,000,000.
Input
* Line 1: Three space-separated integers: N, G, and R * Lines 2..N+1: Each line contains two space-separated integers that are the X,Y position of a fence post on the boundary of FJ's field. * Lines N+2..N+G+1: Each line contains two space-separated integers that are the X,Y position of a circle's center inside FJ's field.
Output
* Line 1: A single integer that is the largest number of ropes FJ can use for his artistic creation.
Sample Input
6 10
10 7
9 1
2 0
0 3
2 2
5 6
8 3
INPUT DETAILS:
A pentagonal field, in which all possible ropes are blocked by three
grain circles, except for the rope between fenceposts 2 and 4.
Sample Output
HINT
除了篱笆桩2和4之间可以连接绳索,其余均会经过怪圈
题目链接:
http://www.lydsy.com/JudgeOnline/problem.php?id=1719
Solution
首先看到题目应该是几何题无误(假装很有道理
看到n<=150感觉似乎暴力也能过。。想想边数最多也只有22500条。。。
于是这时候应该马上想到先预处理每条边是否可以连。。。
直接算圆和线段的交点?感觉应该可以但是似乎不怎么好写。。。
考虑题意。。只要线段有部分含于圆内就不能连。。而这个“部分”可以直接认为是线段上与圆心最近的点。。
于是这个预处理就转化成了求点到线段的最小距离。。这个套套公式就好。。感觉三分也可以但是tle了(可能是我写炸了。。
预处理完之后,考虑怎么求答案。。。
要求线段之间不可以相交。。。。
说白了就是不能有1->4 , 2->5这样的线段同时存在。。考虑DP。。那肯定只能区间DP了。。
n<=150的话O(n^3)还是很轻松的吧
代码
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<queue>
#include<vector>
#include<map>
#define N 20050
#define ept 1e-6
using namespace std;
int n,m;
double R;
struct P{
double x,y;
}a[200],b[200];
int f[200][200];
bool vis[200][200];
double dis(P u,P v){
return sqrt((u.x-v.x)*(u.x-v.x)+(u.y-v.y)*(u.y-v.y));
}
double DIS(P u,P v,P w) {
double space=0;
double a,b,c;
a=dis(u,v);
b=dis(u,w);
c=dis(v,w);
if(c<=ept||b<=ept) {
space=0;
return space;
}
if(a<=ept){
space=b;
return space;
}
if(c*c>=a*a+b*b){
space=b;
return space;
}
if(b*b>=a*a+c*c) {
space=c;
return space;
}
double p=(a+b+c)/2;
double s=sqrt(p*(p-a)*(p-b)*(p-c));
space=2*s/a;
return space;
}
bool judge(P u,P v,P w){
double d1=DIS(u,v,w);
if(d1>R) return 0;
return 1;
}
bool check(P u,P v){
for(int i=1;i<=m;i++)
if(judge(u,v,b[i])) return 0;
return 1;
}
int main(){
scanf("%d%d%lf",&n,&m,&R);
for(int i=1;i<=n;i++)
scanf("%lf%lf",&a[i].x,&a[i].y);
for(int i=1;i<=m;i++)
scanf("%lf%lf",&b[i].x,&b[i].y);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(i==j) continue;
vis[i][j]=check(a[i],a[j]);
}
}
for(int len=3;len<=n;len++){
for(int i=1;i<=n-len+1;i++){
for(int j=i;j<=i+len-1;j++)
f[i][i+len-1]=max(f[i][i+len-1],f[i][j]+f[j][i+len-1]);
if(vis[i][i+len-1]&&(i!=1||i+len-1!=n))
f[i][i+len-1]++;
}
}
printf("%d\n",f[1][n]);
return 0;
}
This passage is made by Iscream-2001.
BZOJ 1719--[Usaco2006 Jan] Roping the Field 麦田巨画(几何&区间dp)的更多相关文章
- BZOJ 1718: [Usaco2006 Jan] Redundant Paths 分离的路径( tarjan )
tarjan求边双连通分量, 然后就是一棵树了, 可以各种乱搞... ----------------------------------------------------------------- ...
- bzoj 1654: [Usaco2006 Jan]The Cow Prom 奶牛舞会 -- Tarjan
1654: [Usaco2006 Jan]The Cow Prom 奶牛舞会 Time Limit: 5 Sec Memory Limit: 64 MB Description The N (2 & ...
- [BZOJ 1652][USACO 06FEB]Treats for the Cows 题解(区间DP)
[BZOJ 1652][USACO 06FEB]Treats for the Cows Description FJ has purchased N (1 <= N <= 2000) yu ...
- BZOJ——1720: [Usaco2006 Jan]Corral the Cows 奶牛围栏
http://www.lydsy.com/JudgeOnline/problem.php?id=1720 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1 ...
- BZOJ 1718: [Usaco2006 Jan] Redundant Paths 分离的路径
Description 给出一个无向图,求将他构造成双连通图所需加的最少边数. Sol Tarjan求割边+缩点. 求出割边,然后缩点. 将双连通分量缩成一个点,然后重建图,建出来的就是一棵树,因为每 ...
- bzoj:1656 [Usaco2006 Jan] The Grove 树木
Description The pasture contains a small, contiguous grove of trees that has no 'holes' in the middl ...
- bzoj:1654 [Usaco2006 Jan]The Cow Prom 奶牛舞会
Description The N (2 <= N <= 10,000) cows are so excited: it's prom night! They are dressed in ...
- BZOJ 1656 [Usaco2006 Jan] The Grove 树木:bfs【射线法】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1656 题意: 给你一个n*m的地图,'.'表示空地,'X'表示树林,'*'表示起点. 所有 ...
- bzoj 1654: [Usaco2006 Jan]The Cow Prom 奶牛舞会【tarjan】
几乎是板子,求有几个size>1的scc 直接tarjan即可 #include<iostream> #include<cstdio> #include<cstri ...
随机推荐
- Jmeter获取不到cookie(备注:前面和后面的几个步骤都可以获取到cookie)
今天的一个Jmeter脚本,有一个HTTP request始终获取不到cookie,但其前面和后面的几个步骤都可以获取到cookie,报文的请求服务器地址都是照着fiddler上面填的,没有问题,后来 ...
- Mockplus微信小程序上线!扫一扫轻松查看原型!
Mockplus团队发布了Mockplus微信小程序. 从现在起,你无需下载Mockplus移动端,用微信扫一扫二维码,即可在微信中打开并查看原型.Mockplus微信小程序,无需安装.卸载,不占用手 ...
- 低配NOSQL
东西写的太简单了 都不好意思说是NOSQL 其实就是STL 的map容器记录了写入的信息 解析了下数据仅此. 分析的时候想了很多 比如学习redis的自写hash,动态调整hash表容量. 比如右值或 ...
- 微信分享 apicloud方式 中遇到的坎
1 appid填错了. 2 图片地址没写对,可能因为拼写问题,图片不存在 3 图片大小有限制.不能太大.
- 硬件GPIO,UART,I2C,SPI电路图
- nodejs的优点
nodejs主要用于搭建高性能的web服务器,优点如下: 可以解决高并发,它是单线程,当访问量很多时,将访问者分配到不同的内存中,不同的内存区做不同的事,以快速解决这个线程.就像医院的分科室看病人.效 ...
- 2018.07.18 洛谷P1171 售货员的难题(状压dp)
传送门 感觉是一道经典的状压dp,随便写了一发卡了卡常数开了个O(2)" role="presentation" style="position: relati ...
- 45 The Effect of External Rewards on Behavior 外界奖励对行为的影响
The Effect of External Rewards on Behavior 外界奖励对行为的影响 ①Psychologists take opposing views on how exte ...
- CentOS yum 源的配置与使用(引用)
http://www.cnblogs.com/mchina/archive/2013/01/04/2842275.html
- Winfrom 嵌入word、excel实现源码
效果图: winform中嵌入word的方法有多种:调用API,使用webBroser或使用DSOFRAMER控件: API过于繁琐: webbroser读取小文件还行,大文件就太痛苦了: 所以还是选 ...