【BZOJ 2132】圈地计划 && 【7.22Test】计划
两种版本的题面
Description
最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地。据了解,这块土地是一块矩形的区域,可以纵横划分为N×M块小区域。GDOI要求将这些区域分为商业区和工业区来开发。根据不同的地形环境,每块小区域建造商业区和工业区能取得不同的经济价值。更具体点,对于第i行第j列的区域,建造商业区将得到Aij收益,建造工业区将得到Bij收益。另外不同的区域连在一起可以得到额外的收益,即如果区域(I,j)相邻(相邻是指两个格子有公共边)有K块(显然K不超过4)类型不同于(I,j)的区域,则这块区域能增加k×Cij收益。经过Tiger.S教授的勘察,收益矩阵A,B,C都已经知道了。你能帮GDOI求出一个收益最大的方案么?
Input
输入第一行为两个整数,分别为正整数N和M,分别表示区域的行数和列数;第2到N+1列,每行M个整数,表示商业区收益矩阵A;第N+2到2N+1列,每行M个整数,表示工业区收益矩阵B;第2N+2到3N+1行,每行M个整数,表示相邻额外收益矩阵C。第一行,两个整数,分别是n和m(1≤n,m≤100);
任何数字不超过1000”的限制
Output
输出只有一行,包含一个整数,为最大收益值。
Sample Input
1 2 3
4 5 6
7 8 9
9 8 7
6 5 4
3 2 1
1 1 1
1 3 1
1 1 1
Sample Output
【数据规模】
对于100%的数据有N,M≤100
HINT
数据已加强,并重测--2015.5.15
Source
问题描述
背景:
神犇CJK最近突然意识到他虽然开得多,但是终究没有领会到开的真谛。
比如说每过完一天,回复的精力值经常超过上限,这样产生了很大的浪费。
于是向XLightGod请教,于是发现XlightGod不知道比自己高到哪里去了 。
于是通过与XLightGod的一番谈笑风生,
他在休息的时候也能获得收益,而且还get了一个特技
于是准备改进他的开法,于是他准备制定了一个计划
题目描述:
CJK的计划是一个n*m的矩阵,矩阵的每一个格子代表一天,他每天有两种选择:
开与不开,每种选择都会有不同的收益。当然他还有一个奇奇怪怪的技能:
如果开与不开相间的话,他将获得额外的收益。具体来说,如果格子(i,j)相邻(相邻是指两个
格子有公共边)有K块(显然K不超过4)类型不同于(I,j)的格子,则这个格子能增加k×Cij收益,
你能帮助CJK求出他能获得的最大收益吗?
输入格式
第一行两个整数n,m,表示矩阵的行数与列数。
接下来一个n*m的矩阵,矩阵的第i行第j列表示(i,j)这格子选择开能获得的收益
接下来一个n*m的矩阵,矩阵的第i行第j列表示(i,j)这个格子选择不开能获得的收益
接下来一个n*m的矩阵,矩阵的第i行第j列表示(i,j)这个格子的Cij(见题目描述)
输出格式
输出一行,表示最大收益
样例输入输出
样例输入1
3 3
1 2 3
4 5 6
7 8 9
9 8 7
6 5 4
3 2 1
1 1 1
1 3 1
1 1 1
样例输出1
81
限制与约定
对于30%的数据,n,m<=5
对于100%的数据,n,m<=100
不需要开long long
思路:最小割。
与“为了博多”很像,只不过一个是同样的一个是不同的。
考虑这是个二分图,可以将一些边反过来。。。
对所有点黑白染色,然后对于黑色点b连接(S,b,kai),(b,T,bukai),对于白色点w连接(S,w,bukai)(w,T,bukai),然后对于相邻的点a,b连接(a,b,C[a]+C[b])跑最小割就OK了。。。。
PS.今天终于知道最小割有个优化了。。。一直TLE,还有为了博多1000+ms。。。
本来可以切的。。。
PS2.BZOJ应该过不去,数据水。。。。
#include<cstdio>
#include<algorithm>
#include<cstring>
#define inf 19260817
using namespace std;
#define rep(a,b,c) for(rg int a=b;a<=c;a++)
#define drep(a,b,c) for(rg int a=b;a>=c;a--)
#define erep(a,b) for(rg int a=fir[b];a;a=nxt[a])
#define il inline
#define rg register
#define vd void
#define t (dis[i])
typedef long long ll;
il int gi(){
rg int x=;rg char ch=getchar();
while(ch<''||ch>'')ch=getchar();
while(ch>=''&&ch<='')x=x*+ch-'',ch=getchar();
return x;
}
const int maxn=,S=,T=,maxm=*;
int id=,fir[maxn],dis[maxm],nxt[maxm],w[maxm];
il vd add(int a,int b,int c){
nxt[++id]=fir[a],fir[a]=id,dis[id]=b,w[id]=c;
if(c)add(b,a,);
}
int num[][],C[][],dep[maxn],head[maxn];
il bool BFS(){
rg int que[maxn],hd=,tl=;
memset(dep,,sizeof dep);
que[hd]=S,dep[S]=;
while(hd-tl){
int now=que[hd++];
erep(i,now)if(!dep[t]&&w[i])que[tl++]=t,dep[t]=dep[now]+;
}
return dep[T];
}
il int Dinic(int now,int maxflow){
if(now==T)return maxflow;
rg int ret=;
for(rg int&i=head[now];i;i=nxt[i])if(w[i]&&dep[t]==dep[now]+){
rg int d=Dinic(t,min(maxflow,w[i]));
w[i]-=d,w[i^]+=d,maxflow-=d,ret+=d;
if(!maxflow)break;
}return ret;
}
int main(){
rg int n=gi(),m=gi(),sum=,a;
rep(i,,n)rep(j,,m)num[i][j]=++num[][];
rep(i,,n)rep(j,,m){
a=gi(),sum+=a;if((i+j)&)add(S,num[i][j],a);else add(num[i][j],T,a);
}
rep(i,,n)rep(j,,m){
a=gi(),sum+=a;if((i+j)&)add(num[i][j],T,a);else add(S,num[i][j],a);
}
rep(i,,n)rep(j,,m){
C[i][j]=gi();
if(i-)sum+=C[i][j];if(j-)sum+=C[i][j];if(i-n)sum+=C[i][j];if(j-m)sum+=C[i][j];
}
rep(i,,n)rep(j,,m){
if(i-)add(num[i][j],num[i-][j],C[i][j]+C[i-][j]);
if(j-)add(num[i][j],num[i][j-],C[i][j]+C[i][j-]);
if(i-n)add(num[i][j],num[i+][j],C[i][j]+C[i+][j]);
if(j-m)add(num[i][j],num[i][j+],C[i][j]+C[i][j+]);
}
while(BFS())memcpy(head,fir,sizeof head),sum-=Dinic(S,inf);
printf("%d\n",sum);
return ;
}
【BZOJ 2132】圈地计划 && 【7.22Test】计划的更多相关文章
- [BZOJ]2132: 圈地计划 最小割
圈地计划 Description 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解,这块土地是一 ...
- BZOJ 2132 圈地计划(最小割)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2132 题意:n*m的格子染色黑白,对于格子(i,j)染黑色则价值为A[i][j],白色为 ...
- bzoj 2132 圈地计划(黑白染色,最小割)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2132 [题意] 给定n*m个区域,建工业区价值A,建商业区价值B,如果(i,j)有k个 ...
- bzoj 2132: 圈地计划
#include<cstdio> #include<iostream> #include<cstring> #define M 100009 #define inf ...
- bzoj 2132 圈地计划【最小割+dinic】
对于网格图,尤其是这种要求相邻各自不同的,考虑黑白染色 对于这张染色后图来说: 对于每个黑格: 表示初始时选择商业区: s点向它连商业区收益的流量,它向t点连工业区收益的流量: 割断S侧的边说明反悔, ...
- 如何使用windows的计划任务?计划任务?
我们经常有一些程序想要过了几小时来运行:比如定时关机 或者说希望能够每天的几点执行一个什么程序: 这些所有的操作都需要用到windows的任务计划:或者叫计划任务:反正都一样 下面小编将指导大家创建一 ...
- bzoj 3232: 圈地游戏
bzoj 3232: 圈地游戏 01分数规划,就是你要最大化\(\frac{\sum A}{\sum B}\),就二分这个值,\(\frac{\sum A}{\sum B} \geq mid\) \( ...
- 易普优APS(高级计划排程)演绎饭局模型(通俗的告诉您ERP计划与APS计划的区别)
一天中午,老张突然回到家里对妻子说:“亲爱的老婆,晚上几个同事要来家里吃饭.这次我专门回家来要用最先进的ERP理念来完成咱家的请客过程了,要把这次宴会搞成一次ERP家宴.你看,我已经用CRM客户关系管 ...
- 【转】如何使用windows的计划任务?计划任务?
我们经常有一些程序想要过了几小时来运行:比如定时关机 或者说希望能够每天的几点执行一个什么程序: 这些所有的操作都需要用到windows的任务计划:或者叫计划任务:反正都一样 下面小编将指导大家创建一 ...
随机推荐
- ETL探索之旅
ETL(Ectract Transform Load) 抽取-转换-加载 ETL 商业软件: Informatica IBM DataStage Microsoft SSIS Oracle ODI ...
- iOS设计模式 - 享元
iOS设计模式 - 享元 原理图 说明 享元模式使用共享物件,用来尽可能减少内存使用量以及分享资讯给尽可能多的相似物件:它适合用于只是因重复而导致使用无法令人接受的大量内存的大量物件.通常物件中的部分 ...
- [C++] 用Xcode来写C++程序[7] Class
用Xcode来写C++程序[7] Class 不带构造函数的Rectangle类 // // Rectangle.h // Plus // // Created by YouXianMing on 1 ...
- 手把手教你制作AppPreview视频并上传到appStore进行审核
手把手教你制作AppPreview视频并上传到appStore进行审核 注意,你需要使用iMovie才能够制作AppPreview视频文件,用QuickTime录制的无效! 最终效果 1. 新建一个事 ...
- 使用 Versions for mac 进行版本控制
刚开始折腾 xcode 5.1 自己的svn版本控制,应该很好用,但是用不好,搞了半天也没法把工程传到svn服务器上去. 在 xcode 5.1 Soure Control 中弄 点击 Check O ...
- MySql5.7.* 多实例安装部署
参考文献: http://blog.csdn.net/tornadojava/article/details/53318773 http://blog.csdn.net/u013948858/arti ...
- js实现svg图形转存为图片下载[转]
我们知道canvas画布可以很方便的js原生支持转为图片格式并下载,但是svg矢量图形则并没有这方面原生的支持.研究过HighChart的svg图形的图片下载机制,其实现原理大体是浏览器端收集SVG代 ...
- 判断是否是微信浏览器JavaScript代码
function isWeiXin(){ var ua = window.navigator.userAgent.toLowerCase(); if(ua.match(/MicroMe ...
- P3935 Calculating
题目描述 若xx分解质因数结果为\(x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n}\),令\(f(x)=(k_1+1)(k_2+1)\cdots (k_n+1)\),求\(\ ...
- haproxy 启动错误
在haproxy启动时会报错 ALERT] / () : Starting proxy short_message: cannot bind socket 问题1,如果bind的是vip,则需要内核添 ...