ELU:
 
梯度下降优化方式:
 
  1. GradientDescentOptimizer
    This one is sensitive to the problem and you can face lots of problems using it, from getting stuck in saddle points to oscillating around the minimum and slow convergence. I found it useful for Word2Vec, CBOW and feed-forward architectures in general, but Momentum is also good.
  2. AdadeltaOptimizer 
    Adadelta addresses the issues of using constant of linearly decaying learning rate. In case of recurrent networks it’s among the fastest.
  3. MomentumOptimizer
    If you learn a regression and find your loss function oscillating, switching from SGD to Momentum may be the right solution.
  4. AdamOptimizer
    Adaptive momentum in addition to the Adadelta features.
  5. FtrlOptimizer
    I haven’t used it myself, but from the paper I see that it’s better suited for online learning on large sparse datasets, like recommendation systems.
  6. RMSPropOptimizer
    This is a variant Adadelta that serves the same purpose - dynamic decay of a learning rate multiplier.
 
CNN神经网络一些tricky的地方:
摘要:
1、适合Relu的参数初始化:w = np.random.randn(n) * sqrt(2.0/n) # current recommendation
2、LR: In practice, if you see that you stopped making progress on the validation set, divide the LR by 2 (or by 5), and keep going, which might give you a surprise.亲测有效
3、关于learning rate:
RNN学习:
 
FCN:http://blog.csdn.net/happyer88/article/details/47205839:Fully Convolutional Networks for Semantic Segmentation笔记
优点:
1,训练一个end-to-end的FCN模型,利用卷积神经网络的很强的学习能力,得到较准确的结果,以前的基于CNN的方法都是要对输入或者输出做一些处理,才能得到最终结果。
 
2,直接使用现有的CNN网络,如AlexNet, VGG16, GoogLeNet,只需在末尾加上upsampling,参数的学习还是利用CNN本身的反向传播原理,"whole image training is effective and efficient."
 
3,不限制输入图片的尺寸,不要求图片集中所有图片都是同样尺寸,只需在最后upsampling时按原图被subsampling的比例缩放回来,最后都会输出一张与原图大小一致的dense prediction map
 
理解DL细节的不错的文章:
 
 
如果遇到了最后的输出值都一样的情况,可能的解决办法如下:
Hey, I had a similar issue with my own (hand-coded) CNN trying to get some results with the CIFAR-10 dataset. What I found was that I had forgotten to normalize the input images to some range that made sense with my weight scales. Try something like X = X / max(abs(X)) to put values between -1 and 1.
Another possibility is your weight initialization is causing many ReLU units to die. I usually initialize all weights with a small number times a normal Gaussian distribution. For wx+ b, b being the biases, you can try that + a small positive constant. I.e. b = weight_scale*random.randn(num, 1) + 0.1
Another idea — your sigmoid unit might be squashing your responses too much. They’re fairly uncommon in CNNs from what I understand, maybe just stick to ReLUs.
Last point — try testing on a small training batch (say 10–20 images) and just train until you overfit with 100% accuracy. That’s one way of knowing that your network is capable of doing something. I think these smaller tests are very important before investing hours or days into proper training, which is what these networks often require.
我最后的解决办法是:加了batch normalization,不过具体原因也没有确定
 
 
GAN的资料:

Deep Learning 资料总结的更多相关文章

  1. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  2. 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)

    ##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...

  3. 【重磅干货整理】机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总

    [重磅干货整理]机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总 .

  4. 机器学习(Machine Learning)&amp;深度学习(Deep Learning)资料

    机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008 ...

  5. 机器学习(Machine Learning)&深度学习(Deep Learning)资料

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

  6. 机器学习(Machine Learning)&深入学习(Deep Learning)资料

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林. ...

  7. 机器学习(Machine Learning)&深度学习(Deep Learning)资料汇总 (上)

    转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Ma ...

  8. 机器学习(Machine Learning)&深度学习(Deep Learning)资料(下)

    转载:http://www.jianshu.com/p/b73b6953e849 该资源的github地址:Qix <Statistical foundations of machine lea ...

  9. 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

随机推荐

  1. 借助System.Linq.Dynamic, IQueryable根据排序字符串排序

    在使用Entity Framework时,若有多个排序,需要OrderBy (OrderByDescending)再ThenBy (ThenByDescending) 假设需要根据Name升序排序,再 ...

  2. 转:C# WinForm窗体及其控件的自适应

    一.说明 2012-11-30 曾经写过 <C# WinForm窗体及其控件自适应各种屏幕分辨率>  ,其中也讲解了控件自适应的原理.近期有网友说,装在panel里面的控件,没有效果? 这 ...

  3. 0. 跟踪标记 (Trace Flag) 简介

    一. 什么是跟踪标记 SQL Server 跟踪标记(Trace Flag),像是一个开关,可用来自定义SQL Server的某种行为或特性,在性能诊断,系统调试等方面较为常用.比如:开启1204或1 ...

  4. 用TableView写带特效的cell

    用TableView写带特效的cell 效果: 源码地址: https://github.com/YouXianMing/UI-Component-Collection 分析: 在UIScrollVi ...

  5. python操作Exchange邮箱实例(-)

    需求很简单,就是实现按公司域名及服务器模拟exchange发送邮件,主要是协助自动化测试.主要功能:收件人/抄送/正文html/附件 本实例基于:python2.7.11 exchangelib1.1 ...

  6. Linux FFmpeg(含x264、lame插件)安装记录

    What is FFmpeg? FFmpeg是一套可以用来记录.转换数字音频.视频,并能将其转化为流的开源计算机程序.它提供了录制.转换以及流化音视频的完整解决方案. What is x264? H. ...

  7. 有效集 matlab代码

    %有效集 function activeset H=[2 -1; -1 4]; c=[-1 -10]'; Ae=[ ]; be=[ ]; Ai=[-3 -2; 1 0; 0 1]; bi=[-6 0 ...

  8. (1)Object类 (2)包装类和数学处理类 (3)String类

    1.Object类1.1 基本概念 java.lang.Object类是Java类层次结构的根类,任何类都是Object类的直接/间接子类. 1.2 常用的方法(重点) Object() - 无参构造 ...

  9. 11g数据库查看dataguard是否同步

    一.环境      主库:       ip地址:192.168.122.203       oracle根目录:/data/db/oracle       SID:qyq       数据文件路径/ ...

  10. CSS-定位属性

    Css学习——定位属性 定位可以看作是一种分层,通过对页面中的各种元素进行定位,可以将某些元素放到其他元素的上层,并在浏览器的窗口中设置这些元素的具体位置. position属性以及Css所提供的4中 ...