ELU:
 
梯度下降优化方式:
 
  1. GradientDescentOptimizer
    This one is sensitive to the problem and you can face lots of problems using it, from getting stuck in saddle points to oscillating around the minimum and slow convergence. I found it useful for Word2Vec, CBOW and feed-forward architectures in general, but Momentum is also good.
  2. AdadeltaOptimizer 
    Adadelta addresses the issues of using constant of linearly decaying learning rate. In case of recurrent networks it’s among the fastest.
  3. MomentumOptimizer
    If you learn a regression and find your loss function oscillating, switching from SGD to Momentum may be the right solution.
  4. AdamOptimizer
    Adaptive momentum in addition to the Adadelta features.
  5. FtrlOptimizer
    I haven’t used it myself, but from the paper I see that it’s better suited for online learning on large sparse datasets, like recommendation systems.
  6. RMSPropOptimizer
    This is a variant Adadelta that serves the same purpose - dynamic decay of a learning rate multiplier.
 
CNN神经网络一些tricky的地方:
摘要:
1、适合Relu的参数初始化:w = np.random.randn(n) * sqrt(2.0/n) # current recommendation
2、LR: In practice, if you see that you stopped making progress on the validation set, divide the LR by 2 (or by 5), and keep going, which might give you a surprise.亲测有效
3、关于learning rate:
RNN学习:
 
FCN:http://blog.csdn.net/happyer88/article/details/47205839:Fully Convolutional Networks for Semantic Segmentation笔记
优点:
1,训练一个end-to-end的FCN模型,利用卷积神经网络的很强的学习能力,得到较准确的结果,以前的基于CNN的方法都是要对输入或者输出做一些处理,才能得到最终结果。
 
2,直接使用现有的CNN网络,如AlexNet, VGG16, GoogLeNet,只需在末尾加上upsampling,参数的学习还是利用CNN本身的反向传播原理,"whole image training is effective and efficient."
 
3,不限制输入图片的尺寸,不要求图片集中所有图片都是同样尺寸,只需在最后upsampling时按原图被subsampling的比例缩放回来,最后都会输出一张与原图大小一致的dense prediction map
 
理解DL细节的不错的文章:
 
 
如果遇到了最后的输出值都一样的情况,可能的解决办法如下:
Hey, I had a similar issue with my own (hand-coded) CNN trying to get some results with the CIFAR-10 dataset. What I found was that I had forgotten to normalize the input images to some range that made sense with my weight scales. Try something like X = X / max(abs(X)) to put values between -1 and 1.
Another possibility is your weight initialization is causing many ReLU units to die. I usually initialize all weights with a small number times a normal Gaussian distribution. For wx+ b, b being the biases, you can try that + a small positive constant. I.e. b = weight_scale*random.randn(num, 1) + 0.1
Another idea — your sigmoid unit might be squashing your responses too much. They’re fairly uncommon in CNNs from what I understand, maybe just stick to ReLUs.
Last point — try testing on a small training batch (say 10–20 images) and just train until you overfit with 100% accuracy. That’s one way of knowing that your network is capable of doing something. I think these smaller tests are very important before investing hours or days into proper training, which is what these networks often require.
我最后的解决办法是:加了batch normalization,不过具体原因也没有确定
 
 
GAN的资料:

Deep Learning 资料总结的更多相关文章

  1. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  2. 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)

    ##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...

  3. 【重磅干货整理】机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总

    [重磅干货整理]机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总 .

  4. 机器学习(Machine Learning)&amp;深度学习(Deep Learning)资料

    机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習.深度學習方面不錯的資料,轉載. 原作:https://github.com/ty4z2008 ...

  5. 机器学习(Machine Learning)&深度学习(Deep Learning)资料

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

  6. 机器学习(Machine Learning)&深入学习(Deep Learning)资料

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林. ...

  7. 机器学习(Machine Learning)&深度学习(Deep Learning)资料汇总 (上)

    转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Ma ...

  8. 机器学习(Machine Learning)&深度学习(Deep Learning)资料(下)

    转载:http://www.jianshu.com/p/b73b6953e849 该资源的github地址:Qix <Statistical foundations of machine lea ...

  9. 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

随机推荐

  1. swift版的枚举变量

    swift版的枚举变量 swift的枚举类型跟普通的类是极为类似的,使用的时候,请不要以为他是一个常量,以下是测试用源码 // // ViewController.swift // SwiftEnum ...

  2. VVeboImageView

    VVeboImageView https://github.com/johnil/VVeboImageView A UIImageView to play gif with low memory. 一 ...

  3. Python(二)列表的增删改查

    一,列表的增删改查 列表中增加元素: 1,从列表的末尾增加一个元素:append("") 2,从列表中插入一个元素:insert(下标位置,插入的元素) 合并列表: 1,name. ...

  4. Laravel 实践之路: 数据库迁移与数据填充

    数据库迁移实际上就是对数据库库表的结构变化做版本控制,之前对数据库库表结构做修改的方式比较原始,比如说对某张库表新增了一个字段,都是直接在库表中执行alter table xxx add .. 的方式 ...

  5. 统计过程控制与评价 Cpk、SPC、PPM

    Cpk(Process capability index)--工序能力指数 SPC(Statisical Process Control)--工艺过程统计受控状态分析 PPM(Parts Per Mi ...

  6. [Codeforces 321D][2018HN省队集训D4T2] Ciel and Flipboard

    [Codeforces 321D][2018HN省队集训D4T2] Ciel and Flipboard 题意 给定一个 \(n\times n\) 的矩阵 \(A\), (\(n\) 为奇数) , ...

  7. FtpWebRequest与FtpWebResponse完成FTP操作

    WebRequestMethods.Ftp类: 表示可与 FTP 请求一起使用的 FTP 协议方法的类型. Append​File    表示要用于将文件追加到 FTP 服务器上的现有文件的 FTP ...

  8. html5 js 游戏的一篇博客 貌似不错

    http://blog.csdn.net/lufy_legend/article/details/8888787

  9. 【原创】Apache ab结果参数详解

    解释如下: Server Software 服务器软件软件名称. Server Hostname 被测服务器的主机名. Server Port 被测试的Web服务器的监听端口. SSL/TLS Pro ...

  10. BZOJ1513:[POI2006]TET-Tetris 3D(线段树套线段树)

    Description Task: Tetris 3D "Tetris" 游戏的作者决定做一个新的游戏, 一个三维的版本, 在里面很多立方体落在平面板,一个立方体开始落下直到碰上一 ...