平衡二叉树(Balanced Binary Tree 或 Height-Balanced Tree)又称AVL树

(a)和(b)都是排序二叉树,但是查找(b)的93节点就需要查找6次,查找(a)的93节点就需要查找3次,所以(b)的效率不高。

平衡二叉树(Balanced Binary Tree 或 Height-Balanced Tree)又称AVL树。它或者是一颗空树,或者是具有下列性质的二叉树:它的左子树和右子树的深度只差的绝对值不超过1。若将二叉树上节点的平衡因子BF(Balance Factor)定义为该节点的左子树的深度减去它右子树的深度,则平衡二叉树上所有节点的平衡因子只可能是-1,0,1。只要二叉树上有一个节点的平衡因子的绝对值大于1,则该二叉树就是不平衡的。

上图(a)是平衡二叉树,(b)不是平衡二叉树,因为有的节点的平衡因子大于1了。

插入节点的大致思路:

  • 首先找到插入节点的位置,插入节点
  • 插入节点后,调整相关节点的平衡因子
  • 调整平衡因子后,如果发现树不平衡了,就要进行节点的调整(单左旋转,或单右旋转,或双旋转(先左后又,或者先右后左)。

avl_tree.h

#ifndef __AVLTREE__
#define __AVLTREE__ #include<stdio.h>
#include<malloc.h>
#include<assert.h>
#include "nodestack.h" #define Type int
#define FALSE 0
#define TRUE 1
#define BOOL int typedef struct AVLNode{
Type data;
struct AVLNode* left;
struct AVLNode* right;
int bf;//平衡因子
}AVLNode; typedef struct AVLTree{
struct AVLNode* root;
}AVLTree; void init_avl_tree(AVLTree* avl);
//插入节点
BOOL insert_avl(AVLTree* avl, Type t); #endif

avl_tree.c

#include "avl_tree.h"

void init_avl_tree(AVLTree* avl){
avl->root = NULL;
}
AVLNode* malNode(Type x){
AVLNode* t = (AVLNode*)malloc(sizeof(AVLNode));
assert(NULL != t);
t->data = x;
t->left = NULL;
t->right = NULL;
t->bf = 0;
return t;
}
//右旋转
void rotateR(AVLNode** t){
AVLNode* subR = *t;
*t = (*t)->left;
subR->left = (*t)->right;
(*t)->right = subR;
(*t)->bf = 0;
subR->bf = 0; }
//左旋转
void rotateL(AVLNode** t){
AVLNode* subL = *t;
*t = (*t)->right;
subL->right = (*t)->left;
(*t)->left = subL;
(*t)->bf = 0;
subL->bf = 0; }
//左右旋转
void rotateLR(AVLNode** t){
AVLNode* subR = *t;
AVLNode* subL = subR->left;
*t = subL->right; subL->right = (*t)->left;
(*t)->left = subL;
if((*t)->bf <= 0){///??
subL->bf = 0;
}
else{
subL->bf = -1;
} subR->left = (*t)->right;
(*t)->right = subR;
if((*t)->bf == -1){
subR->bf = 1;//???
}
else{
subR->bf = 0;//???
} (*t)->bf = 0;
}
//右左旋转
void rotateRL(AVLNode** t){
AVLNode* subL = *t;
AVLNode* subR = subL->right;
*t = subR->left; subR->left = (*t)->right;
(*t)->right = subR;
if((*t)->bf >= 0){
subR->bf = 0;
}
else{
subR->bf = 1;
} subL->right = (*t)->left;
(*t)->left = subL;
if((*t)->bf == 1){
subL->bf = -1;
}
else{
subL->bf = 0;
} (*t)->bf = 0;
}
//插入树的节点
BOOL insert_avl_node(AVLNode** t, Type x){
AVLNode* p = *t;
AVLNode* parent = NULL; nodestack st;
init(&st); while(p != NULL){
if(x == p->data)
return FALSE;
parent = p;
push(&st, parent);
if(x < p->data)
p = p->left;
else
p = p->right;
}
p = malNode(x);
//插入节点为root节点
if(parent == NULL){
*t = p;
return TRUE;
}
//插入节点不是root节点
if(x < parent->data)
parent->left = p;
else
parent->right = p; //调整BF
while(length(&st) != 0){
parent = getTop(&st);
pop(&st);
if(parent->left == p){
parent->bf--;
}
else{
parent->bf++;
} if(parent->bf == 0){
break;
}
if(parent->bf == 1 || parent->bf == -1){
p = parent;
}
else{
//旋转树,让树变成平衡树
int flag = (parent->bf < 0) ? -1 : 1;
//符号相同,说明是一条直线,不是折线,所以单旋转
if(p->bf == flag){
//因为是撇/,所以右旋转
if(flag == -1){
rotateR(&parent);
}
//因为是捺\,所以左旋转
else{
rotateL(&parent);
}
}
//符号不同,说明是折线,所以双旋转
else{
//折线的角指向右>
if(flag == 1){
rotateRL(&parent);
}
//折线的角指向左<
else{
rotateLR(&parent);
}
}
break;
}
} if(length(&st) == 0){
*t = parent;
}
else{
AVLNode* q = getTop(&st);
if(q->data > parent->data){
q->left = parent;
}
else{
q->right = parent;
}
} clear(&st);
return TRUE;
}
//插入节点
BOOL insert_avl(AVLTree* avl, Type t){
return insert_avl_node(&avl->root, t);
}

avl_treemain.c

#include "avl_tree.h"

int main(){
AVLTree avl;
init_avl_tree(&avl); //Type ar[] = {13,24,37,90,53};
//Type ar[] = {30,20,10};
//Type ar[] = {30,20,40,10,25,5,22,28,21};
//Type ar[] = {30,20,10};
//Type ar[] = {50,40,60,10,45,70,5,30,20,12};
Type ar[] = {30,20,50,10,40,70,60,80,55}; int n = sizeof(ar) / sizeof(Type);
for(int i = 0; i < n; ++i){
insert_avl(&avl, ar[i]);
}
return 0;
}

完整代码

编译方法:g++ -g nodestack.c avl_tree.c avl_treemain.c

平衡二叉树(Balanced Binary Tree 或 Height-Balanced Tree)又称AVL树的更多相关文章

  1. 数据结构与算法——平衡二叉树(AVL树)

    目录 二叉排序树存在的问题 基本介绍 单旋转(左旋转) 树高度计算 旋转 右旋转 双旋转 完整代码 二叉排序树存在的问题 一个数列 {1,2,3,4,5,6},创建一颗二叉排序树(BST) 创建完成的 ...

  2. C++版 - 剑指offer 面试题39:判断平衡二叉树(LeetCode 110. Balanced Binary Tree) 题解

    剑指offer 面试题39:判断平衡二叉树 提交网址:  http://www.nowcoder.com/practice/8b3b95850edb4115918ecebdf1b4d222?tpId= ...

  3. [CareerCup] 4.1 Balanced Binary Tree 平衡二叉树

    4.1 Implement a function to check if a binary tree is balanced. For the purposes of this question, a ...

  4. 平衡二叉树(Balanced Binary Tree)

    平衡二叉树(Balanced Binary Tree)/AVL树:

  5. [Algorithm] Find Max Items and Max Height of a Completely Balanced Binary Tree

    A balanced binary tree is something that is used very commonly in analysis of computer science algor ...

  6. LeetCode 110. 平衡二叉树(Balanced Binary Tree) 15

    110. 平衡二叉树 110. Balanced Binary Tree 题目描述 给定一个二叉树,判断它是否是高度平衡的二叉树. 本题中,一棵高度平衡二叉树定义为: 一个二叉树每个节点的左右两个子树 ...

  7. AVL平衡二叉树的各种问题(Balanced Binary Tree)

    AVL树或者是一棵空树,或者是具有以下性质的非空二叉搜索树: 1. 任一结点的左.右子树均为AVL树: 2.根结点左.右子树高度差的绝对值不超过1. 1.声明 #include<iostream ...

  8. [LeetCode] 110. Balanced Binary Tree ☆(二叉树是否平衡)

    Balanced Binary Tree [数据结构和算法]全面剖析树的各类遍历方法 描述 解析 递归分别判断每个节点的左右子树 该题是Easy的原因是该题可以很容易的想到时间复杂度为O(n^2)的方 ...

  9. 110. Balanced Binary Tree - LeetCode

    Question 110. Balanced Binary Tree Solution 题目大意:判断一个二叉树是不是平衡二叉树 思路:定义个boolean来记录每个子节点是否平衡 Java实现: p ...

随机推荐

  1. C# 委托 事件

    一:什么叫委托 通过反射发现,委托其实是一个类,继承自System.MulticastDelegate,但是System.MulticastDelegate这个类是特殊类,不能被继承 二:委托的声明 ...

  2. 工作中常用Windows快捷键整理(1)-快速关闭网页

    打开桌面 win+D,显示桌面快捷键,不会关闭浏览器页面,是显示桌面. 关闭当前打开的所有标签页 Alt+F4,关闭当前打开的所有浏览器标签页. 关闭当前打开的标签页 Ctrl+W,关闭当前打开的标签 ...

  3. 从零开始学安全(十一)●IP地址

    127 都是本机地址 ip  DE 类网段 都是广播网段 它并不指向特定的网络 用不上

  4. [PHP]代码执行和生命周期

    PHP代码的执行:1.和大部分程序一样,接收数据,处理数据,输出结果2.编写的代码就是输入的数据,php内核进行处理,返回相应的输出3.php作为业务程序和编译语言的区别就是,php多了一步把用户代码 ...

  5. Redirection

    Typically, the syntax of these characters is as follows, using < to redirect input, and > to r ...

  6. 虚拟机与Docker有何不同?

    译者按: 各种虚拟机技术开启了云计算时代:而Docker,作为下一代虚拟化技术,正在改变我们开发.测试.部署应用的方式.那虚拟机与Docker究竟有何不同呢? 原文: Comparing Virtua ...

  7. wepy框架须知

    安装脚手架 . 安装构件工具 npm i wepy-cli -g .创建项目 wepy new 项目名 .实时编译 wepy build --watch 或 npm run dev .使用微信开发者工 ...

  8. JS取出两个数组中的不同或相同元素

    1.取出两个数组的不同元素 var arr1 = [0,1,2,3,4,5]; var arr2 = [0,4,6,1,3,9]; function getArrDifference(arr1, ar ...

  9. 05-HTML-超链接标签

    <html> <head>  <title>超链接标签学习</title>  <meta charset="utf-8"/&g ...

  10. 2018-11-29 VS Code英汉词典插件v0.0.6-改为TS实现, 加测试

    如前文VS Code英汉词典插件v0.0.4-驼峰下划线命名打算, 首先将JS源码改为TypeScript实现, 并添加了必要的测试. 昨天得知vue.js 3.0会用TypeScript实现, 正好 ...