平衡二叉树(Balanced Binary Tree 或 Height-Balanced Tree)又称AVL树

(a)和(b)都是排序二叉树,但是查找(b)的93节点就需要查找6次,查找(a)的93节点就需要查找3次,所以(b)的效率不高。

平衡二叉树(Balanced Binary Tree 或 Height-Balanced Tree)又称AVL树。它或者是一颗空树,或者是具有下列性质的二叉树:它的左子树和右子树的深度只差的绝对值不超过1。若将二叉树上节点的平衡因子BF(Balance Factor)定义为该节点的左子树的深度减去它右子树的深度,则平衡二叉树上所有节点的平衡因子只可能是-1,0,1。只要二叉树上有一个节点的平衡因子的绝对值大于1,则该二叉树就是不平衡的。

上图(a)是平衡二叉树,(b)不是平衡二叉树,因为有的节点的平衡因子大于1了。

插入节点的大致思路:

  • 首先找到插入节点的位置,插入节点
  • 插入节点后,调整相关节点的平衡因子
  • 调整平衡因子后,如果发现树不平衡了,就要进行节点的调整(单左旋转,或单右旋转,或双旋转(先左后又,或者先右后左)。

avl_tree.h

#ifndef __AVLTREE__
#define __AVLTREE__ #include<stdio.h>
#include<malloc.h>
#include<assert.h>
#include "nodestack.h" #define Type int
#define FALSE 0
#define TRUE 1
#define BOOL int typedef struct AVLNode{
Type data;
struct AVLNode* left;
struct AVLNode* right;
int bf;//平衡因子
}AVLNode; typedef struct AVLTree{
struct AVLNode* root;
}AVLTree; void init_avl_tree(AVLTree* avl);
//插入节点
BOOL insert_avl(AVLTree* avl, Type t); #endif

avl_tree.c

#include "avl_tree.h"

void init_avl_tree(AVLTree* avl){
avl->root = NULL;
}
AVLNode* malNode(Type x){
AVLNode* t = (AVLNode*)malloc(sizeof(AVLNode));
assert(NULL != t);
t->data = x;
t->left = NULL;
t->right = NULL;
t->bf = 0;
return t;
}
//右旋转
void rotateR(AVLNode** t){
AVLNode* subR = *t;
*t = (*t)->left;
subR->left = (*t)->right;
(*t)->right = subR;
(*t)->bf = 0;
subR->bf = 0; }
//左旋转
void rotateL(AVLNode** t){
AVLNode* subL = *t;
*t = (*t)->right;
subL->right = (*t)->left;
(*t)->left = subL;
(*t)->bf = 0;
subL->bf = 0; }
//左右旋转
void rotateLR(AVLNode** t){
AVLNode* subR = *t;
AVLNode* subL = subR->left;
*t = subL->right; subL->right = (*t)->left;
(*t)->left = subL;
if((*t)->bf <= 0){///??
subL->bf = 0;
}
else{
subL->bf = -1;
} subR->left = (*t)->right;
(*t)->right = subR;
if((*t)->bf == -1){
subR->bf = 1;//???
}
else{
subR->bf = 0;//???
} (*t)->bf = 0;
}
//右左旋转
void rotateRL(AVLNode** t){
AVLNode* subL = *t;
AVLNode* subR = subL->right;
*t = subR->left; subR->left = (*t)->right;
(*t)->right = subR;
if((*t)->bf >= 0){
subR->bf = 0;
}
else{
subR->bf = 1;
} subL->right = (*t)->left;
(*t)->left = subL;
if((*t)->bf == 1){
subL->bf = -1;
}
else{
subL->bf = 0;
} (*t)->bf = 0;
}
//插入树的节点
BOOL insert_avl_node(AVLNode** t, Type x){
AVLNode* p = *t;
AVLNode* parent = NULL; nodestack st;
init(&st); while(p != NULL){
if(x == p->data)
return FALSE;
parent = p;
push(&st, parent);
if(x < p->data)
p = p->left;
else
p = p->right;
}
p = malNode(x);
//插入节点为root节点
if(parent == NULL){
*t = p;
return TRUE;
}
//插入节点不是root节点
if(x < parent->data)
parent->left = p;
else
parent->right = p; //调整BF
while(length(&st) != 0){
parent = getTop(&st);
pop(&st);
if(parent->left == p){
parent->bf--;
}
else{
parent->bf++;
} if(parent->bf == 0){
break;
}
if(parent->bf == 1 || parent->bf == -1){
p = parent;
}
else{
//旋转树,让树变成平衡树
int flag = (parent->bf < 0) ? -1 : 1;
//符号相同,说明是一条直线,不是折线,所以单旋转
if(p->bf == flag){
//因为是撇/,所以右旋转
if(flag == -1){
rotateR(&parent);
}
//因为是捺\,所以左旋转
else{
rotateL(&parent);
}
}
//符号不同,说明是折线,所以双旋转
else{
//折线的角指向右>
if(flag == 1){
rotateRL(&parent);
}
//折线的角指向左<
else{
rotateLR(&parent);
}
}
break;
}
} if(length(&st) == 0){
*t = parent;
}
else{
AVLNode* q = getTop(&st);
if(q->data > parent->data){
q->left = parent;
}
else{
q->right = parent;
}
} clear(&st);
return TRUE;
}
//插入节点
BOOL insert_avl(AVLTree* avl, Type t){
return insert_avl_node(&avl->root, t);
}

avl_treemain.c

#include "avl_tree.h"

int main(){
AVLTree avl;
init_avl_tree(&avl); //Type ar[] = {13,24,37,90,53};
//Type ar[] = {30,20,10};
//Type ar[] = {30,20,40,10,25,5,22,28,21};
//Type ar[] = {30,20,10};
//Type ar[] = {50,40,60,10,45,70,5,30,20,12};
Type ar[] = {30,20,50,10,40,70,60,80,55}; int n = sizeof(ar) / sizeof(Type);
for(int i = 0; i < n; ++i){
insert_avl(&avl, ar[i]);
}
return 0;
}

完整代码

编译方法:g++ -g nodestack.c avl_tree.c avl_treemain.c

平衡二叉树(Balanced Binary Tree 或 Height-Balanced Tree)又称AVL树的更多相关文章

  1. 数据结构与算法——平衡二叉树(AVL树)

    目录 二叉排序树存在的问题 基本介绍 单旋转(左旋转) 树高度计算 旋转 右旋转 双旋转 完整代码 二叉排序树存在的问题 一个数列 {1,2,3,4,5,6},创建一颗二叉排序树(BST) 创建完成的 ...

  2. C++版 - 剑指offer 面试题39:判断平衡二叉树(LeetCode 110. Balanced Binary Tree) 题解

    剑指offer 面试题39:判断平衡二叉树 提交网址:  http://www.nowcoder.com/practice/8b3b95850edb4115918ecebdf1b4d222?tpId= ...

  3. [CareerCup] 4.1 Balanced Binary Tree 平衡二叉树

    4.1 Implement a function to check if a binary tree is balanced. For the purposes of this question, a ...

  4. 平衡二叉树(Balanced Binary Tree)

    平衡二叉树(Balanced Binary Tree)/AVL树:

  5. [Algorithm] Find Max Items and Max Height of a Completely Balanced Binary Tree

    A balanced binary tree is something that is used very commonly in analysis of computer science algor ...

  6. LeetCode 110. 平衡二叉树(Balanced Binary Tree) 15

    110. 平衡二叉树 110. Balanced Binary Tree 题目描述 给定一个二叉树,判断它是否是高度平衡的二叉树. 本题中,一棵高度平衡二叉树定义为: 一个二叉树每个节点的左右两个子树 ...

  7. AVL平衡二叉树的各种问题(Balanced Binary Tree)

    AVL树或者是一棵空树,或者是具有以下性质的非空二叉搜索树: 1. 任一结点的左.右子树均为AVL树: 2.根结点左.右子树高度差的绝对值不超过1. 1.声明 #include<iostream ...

  8. [LeetCode] 110. Balanced Binary Tree ☆(二叉树是否平衡)

    Balanced Binary Tree [数据结构和算法]全面剖析树的各类遍历方法 描述 解析 递归分别判断每个节点的左右子树 该题是Easy的原因是该题可以很容易的想到时间复杂度为O(n^2)的方 ...

  9. 110. Balanced Binary Tree - LeetCode

    Question 110. Balanced Binary Tree Solution 题目大意:判断一个二叉树是不是平衡二叉树 思路:定义个boolean来记录每个子节点是否平衡 Java实现: p ...

随机推荐

  1. Deeplearning.ai课程笔记--汇总

    从接触机器学习就了解到Andrew Ng的机器学习课程,后来发现又出来深度学习课程,就开始在网易云课堂上学习deeplearning.ai的课程,Andrew 的课真是的把深入浅出.当然学习这些课程还 ...

  2. 基于vue与vux做的可滑动tab组件(附源码)

    背景 前不久,刚完成了一个商品列表+购物车功能的页面,因为一级商品分类在顶部tab中显示,可滑动,间距可定制,如下图所示: 定制的tab需求如下: 1. 每个tab-item的间距是相同的,可定制 2 ...

  3. Python函数属性和PyCodeObject

    函数属性 python中的函数是一种对象,它有属于对象的属性.除此之外,函数还可以自定义自己的属性.注意,属性是和对象相关的,和作用域无关. 自定义属性 自定义函数自己的属性方式很简单.假设函数名称为 ...

  4. VUE 组件通信总结

    1.prop 父组件传递给子组件,即通过VUE本身具有的Props属性来传递值 Child组件 <template> <span>{{message}}</span> ...

  5. [转]Docker修改默认时区

    本文转自:https://www.jianshu.com/p/004ddf941aac 前言 前段时间把公司部分项目迁移到了docker 容器里.查看ngixn反向代理的log时发现时间与正确时间相差 ...

  6. windows 下 nginx 配置文件路径

    nginx在windowns下路径 http{ #虚拟主机1 server{ listen 80; #监听端口,基于IP配置的时候变更此处,比如192.168.1.100:8080; server_n ...

  7. sql server查询语句条件判断字段值是否为NULL

    判断字段是否为null select * from table where c is null    select * from table where c is not null 判断字段是否为空 ...

  8. [android] 短信的广播接收者

    比较重要的一个广播事件,短信 界面布局,比如播放视频,默认是横屏全屏的,清单文件中进行设置, 在<activity/>节点设置屏幕朝向属性,android:screenOrientatio ...

  9. [angularjs] angularjs系列笔记(四)过滤器

    过滤器可以使用一个管道字符(|)添加到表达式和指令中,这不就是模板函数吗 <body> <div ng-app="Home"> <div ng-con ...

  10. 28.QT-QPainter介绍

    介绍 可以在QPaintDevice类上绘制各种图形 QPaintDevice类表示QPainter的绘图设备(画布) QpaintDevice子类有QImage.QOpenGLPaintDevice ...