Integer’s Power HDU - 3208(容斥原理)
找出(l,r)内的所有的指数最大的次方和
因为一个数可能可以看成a^b和c^d,所以我需要去重,从后往前枚举幂数,然后找可以整除的部分,把低次幂的数去掉。
然后开n方的部分,先用pow()函数找到最接近答案的数,但是会丢失精度,然后在这个数的附近寻找最接近答案的整数,用快速幂在乘n次幂回去,看最接近原本数的是哪一个。
#include<map>
#include<set>
#include<ctime>
#include<cmath>
#include<stack>
#include<queue>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lowbit(x) (x & (-x)) typedef unsigned long long int ull;
typedef long long int ll;
const double pi = 4.0*atan(1.0);
const int inf = 0x3f3f3f3f;
const int maxn = ;
const int maxm = ;
const int mod = ;
const double eps = 1e-;
using namespace std; ll n, m;
int T, tol;
ll num[];
ll INF = 1e18; ll qpow(ll a, ll b) {
ll ans = ;
while(b) {
if(b&) {
double tmp = 1.0 * INF / ans;
if(a > tmp) return -;
ans = ans * a;
}
b >>= ;
if(a > ((ll)<<) && b) return -;
a = a*a;
}
return ans;
} ll calc(ll x, int pos) {
ll a = (ll)pow((double)x, 1.0/pos);
ll ansl = qpow(a-, pos);
ll ansm = qpow(a, pos);
ll ansr = qpow(a+, pos);
if(ansr != - && ansr <= x) return a+;
if(ansm != - && ansm <= x) return a;
return a-;
} ll solve(ll x) {
memset(num, , sizeof num);
num[] = x;
int pos = ;
for(; pos <= ; pos++) {
ll tmp = calc(x, pos) - ;
if(tmp <= ) break;
num[pos] = tmp;
}
pos--;
for(int i=pos; i>=; i--) {
for(int j=; i*j<=pos; j++) {
num[i] -= num[i*j];
}
}
//for(int i=1; i<=pos; i++) printf("%I64d%c", num[i], i==pos ? '\n' : ' ');
ll ans = ;
for(int i=; i<=pos; i++) ans += i * num[i];
return ans;
} int main() {
while(scanf("%I64d%I64d", &n, &m), n||m) {
ll ans = solve(m);
ans -= solve(n-);
printf("%I64d\n", ans);
}
return ;
}
Integer’s Power HDU - 3208(容斥原理)的更多相关文章
- HDU 3208 Integer’s Power
Integer’s Power Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Origina ...
- hdu 3208 Integer’s Power 筛法
Integer’s Power Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- GCD HDU - 1695 容斥原理(复杂度低的版本)
题意: 让你从区间[a,b]里面找一个数x,在区间[c,d]里面找一个数y.题目上已经设定a=b=1了.问你能找到多少对GCD(x,y)=k.x=5,y=7和y=5,x=7是同一对 题解: 弄了半天才 ...
- - Visible Trees HDU - 2841 容斥原理
题意: 给你一个n*m的矩形,在1到m行,和1到n列上都有一棵树,问你站在(0,0)位置能看到多少棵树 题解: 用(x,y)表示某棵树的位置,那么只要x与y互质,那么这棵树就能被看到.不互质的话说明前 ...
- HDU Integer's Power(容斥原理)
题意 求[l,r]的最大指数和(1<=l,r<=10^18) 最大指数和(如64=8^2=4^3=2^6,所以64的最大指数和是6) 题解 很明显我们可以先求出[1,n]的最大指数和,然后 ...
- 【HDOJ】3208 Integer’s Power
1. 题目描述定义如下函数$f(x)$:对于任意整数$y$,找到满足$x^k = y$同时$x$最小并的$k$值.所求为区间$[a, b]$的数代入$f$的累加和,即\[\sum_{x=a}^{b} ...
- HDU 4059 容斥原理+快速幂+逆元
E - The Boss on Mars Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64 ...
- HDU 1796 容斥原理
How many integers can you find Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 ...
- HDU 1796 容斥原理 How many integers can you find
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1796 处男容斥原理 纪念一下 TMD看了好久才明白DFS... 先贴代码后解释 #includ ...
随机推荐
- Windows和Linux的Jmeter分布式集群压力测试
Windows的Jmeter分布式集群压力测试 原文:https://blog.csdn.net/cyjs1988/article/details/80267475 在使用Jmeter进行性能测试时, ...
- js数据放入缓存,需要再调用
再贴代码之前先描述下,这个技术应用的场景:一个页面的http请求次数能少点就少,这样大大提高用户体验.所以再一个页面发起一个请求,把所有数据都拿到后储存在缓存里面,你想用的时候再调用出来,这个是非常好 ...
- 生命周期函数以及vue的全局注册
beforeCreate 在创造实例之前 created 创造实例以后 beforeMount 在挂载前 render 渲染节点到页面上 //将虚拟dom数组渲染出来 mounted 挂载以后 bef ...
- HTML中的几种空格
HTML提供了5种空格实体(space entity),它们拥有不同的宽度,非断行空格( )是常规空格的宽度,可运行于所有主流浏览器.其他几种空格( )在不同浏览器中宽度各异. ...
- 字符串和ASCII之间的转换
public class CharToAscii { public static void main(String[] args) { CharToAscii.AscToString(); CharT ...
- 关于Vue-cli 组件引入CSS样式文件
在 Vue-cli 组件 .vue 文件中引入 css 样式表出错 由于使用Vue-cli后, 引入css 样式表 不需要 多余../../ 之类路径 现在写法也发生了改变 <style ...
- 如何使用nodejs快速搭建本地服务器
1.首先要安装好node,js 2.以下有安装包下载的链接:这里的安装包是.msi,如果要其他的,可以到菜鸟教程上去找 32 位安装包下载地址 : https://nodejs.org/dist/v4 ...
- 使用PHP进行SOCKET编程
一.SOCKET原理图 二.SOCKET常用函数 1.创建socket函数: resource socket_create ( int $domain , int $type , int $proto ...
- MyBatis SpringBoot 杂记
最近接了个xxx代码. 不能说人家不好, 因为必进年月久了.能用这么长时间, 不就说明还不错么?! 我们现在每天写的, 能超出人家的么~~~ 呵呵 Java项目中, 把动态数据源切换的框架整合进来. ...
- web浏览器兼容问题
1.居中问题 div中,ie默认居中,而ff(firefox)默认是向左对齐.解决办法:margin 0 auto 2.高度问题 如果有两个div排列或者嵌套,如果第一个div设置了高度,而内容超出d ...