import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt BATCH_START = 0
TIME_STEPS = 20
BATCH_SIZE = 50
INPUT_SIZE = 1
OUTPUT_SIZE = 1
CELL_SIZE = 10
LR = 0.006
BATCH_START_TEST = 0 def get_batch():
global BATCH_START, TIME_STEPS
# xs shape (50batch, 20steps)
xs = np.arange(BATCH_START, BATCH_START+TIME_STEPS*BATCH_SIZE).reshape((BATCH_SIZE, TIME_STEPS)) / (10*np.pi)
seq = np.sin(xs)
res = np.cos(xs)
BATCH_START += TIME_STEPS
return [seq[:, :, np.newaxis], res[:, :, np.newaxis], xs] class LSTMRNN(object):
def __init__(self, n_steps, input_size, output_size, cell_size, batch_size):
self.n_steps = n_steps
self.input_size = input_size
self.output_size = output_size
self.cell_size = cell_size
self.batch_size = batch_size
with tf.name_scope('inputs'):
self.xs = tf.placeholder(tf.float32, [None, n_steps, input_size], name='xs')
self.ys = tf.placeholder(tf.float32, [None, n_steps, output_size], name='ys')
with tf.variable_scope('in_hidden'):
self.add_input_layer()
with tf.variable_scope('LSTM_cell'):
self.add_cell()
with tf.variable_scope('out_hidden'):
self.add_output_layer()
with tf.name_scope('cost'):
self.compute_cost()
with tf.name_scope('train'):
self.train_op = tf.train.AdamOptimizer(LR).minimize(self.cost) def add_input_layer(self,):
l_in_x = tf.reshape(self.xs, [-1, self.input_size], name='2_2D')
Ws_in = self._weight_variable([self.input_size, self.cell_size])
bs_in = self._bias_variable([self.cell_size,])
with tf.name_scope('Wx_plus_b'):
l_in_y = tf.matmul(l_in_x, Ws_in) + bs_in
self.l_in_y = tf.reshape(l_in_y, [-1, self.n_steps, self.cell_size], name='2_3D') def add_cell(self):
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(self.cell_size, forget_bias=1.0, state_is_tuple=True)
with tf.name_scope('initial_state'):
self.cell_init_state = lstm_cell.zero_state(self.batch_size, dtype=tf.float32)
self.cell_outputs, self.cell_final_state = tf.nn.dynamic_rnn(
lstm_cell, self.l_in_y, initial_state=self.cell_init_state, time_major=False) def add_output_layer(self):
l_out_x = tf.reshape(self.cell_outputs, [-1, self.cell_size], name='2_2D')
Ws_out = self._weight_variable([self.cell_size, self.output_size])
bs_out = self._bias_variable([self.output_size, ])
with tf.name_scope('Wx_plus_b'):
self.pred = tf.matmul(l_out_x, Ws_out) + bs_out def compute_cost(self):
losses = tf.contrib.legacy_seq2seq.sequence_loss_by_example(
[tf.reshape(self.pred, [-1], name='reshape_pred')],
[tf.reshape(self.ys, [-1], name='reshape_target')],
[tf.ones([self.batch_size * self.n_steps], dtype=tf.float32)],
average_across_timesteps=True,
softmax_loss_function=self.ms_error,
name='losses'
)
with tf.name_scope('average_cost'):
self.cost = tf.div(
tf.reduce_sum(losses, name='losses_sum'),
self.batch_size,
name='average_cost')
tf.summary.scalar('cost', self.cost) def ms_error(self, y_target, y_pre):
return tf.square(tf.sub(y_target, y_pre)) def _weight_variable(self, shape, name='weights'):
initializer = tf.random_normal_initializer(mean=0., stddev=1.,)
return tf.get_variable(shape=shape, initializer=initializer, name=name) def _bias_variable(self, shape, name='biases'):
initializer = tf.constant_initializer(0.1)
return tf.get_variable(name=name, shape=shape, initializer=initializer) if __name__ == '__main__':
model = LSTMRNN(TIME_STEPS, INPUT_SIZE, OUTPUT_SIZE, CELL_SIZE, BATCH_SIZE)
sess = tf.Session()
merged=tf.summary.merge_all()
writer=tf.summary.FileWriter("niu0127/logs0127",sess.graph)
sess.run(tf.initialize_all_variables()) plt.ion()
plt.show() for i in range(200):
seq, res, xs = get_batch()
if i == 0:
feed_dict = {
model.xs: seq,
model.ys: res,
}
else:
feed_dict = {
model.xs: seq,
model.ys: res,
model.cell_init_state: state
}
_, cost, state, pred = sess.run(
[model.train_op, model.cost, model.cell_final_state, model.pred],
feed_dict=feed_dict) plt.plot(xs[0,:],res[0].flatten(),'r',xs[0,:],pred.flatten()[:TIME_STEPS],'g--')
plt.title('Matplotlib,RNN,Efficient learning,Approach,Cosx --Jason Niu')
plt.ylim((-1.2,1.2))
plt.draw()
plt.pause(0.1)

  

TF之RNN:matplotlib动态演示之基于顺序的RNN回归案例实现高效学习逐步逼近余弦曲线—Jason niu的更多相关文章

  1. TF之RNN:TensorBoard可视化之基于顺序的RNN回归案例实现蓝色正弦虚线预测红色余弦实线—Jason niu

    import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEP ...

  2. TF之NN:matplotlib动态演示深度学习之tensorflow将神经网络系统自动学习并优化修正并且将输出结果可视化—Jason niu

    import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_ ...

  3. TF之RNN:基于顺序的RNN分类案例对手写数字图片mnist数据集实现高精度预测—Jason niu

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...

  4. TF:利用TF的train.Saver载入曾经训练好的variables(W、b)以供预测新的数据—Jason niu

    import tensorflow as tf import numpy as np W = tf.Variable(np.arange(6).reshape((2, 3)), dtype=tf.fl ...

  5. TensorFlow RNN MNIST字符识别演示快速了解TF RNN核心框架

    TensorFlow RNN MNIST字符识别演示快速了解TF RNN核心框架 http://blog.sina.com.cn/s/blog_4b0020f30102wv4l.html

  6. [Unity][Heap sort]用Unity动态演示堆排序的过程(How Heap Sort Works)

    [Unity][Heap sort]用Unity动态演示堆排序的过程 How Heap Sort Works 最近做了一个用Unity3D动态演示堆排序过程的程序. I've made this ap ...

  7. 关于csdn博客中案例效果的动态演示

    在曾经一篇博文中,网友评论说要是案例效果是动态演示的就好了,我认为说的非常是有道理.由于一个简单的截图不能非常好的展示案例效果.要是有一张gif图能动态的播放案例效果就再好只是了.在这里提供一个小软件 ...

  8. 【Java】代理模式,静态代理和动态代理(基于JDK或CGLib)

    当我们需要在一个方法之前或之后添加一段逻辑时,自然会想到使用代理类.代理类帮我们代理了实际类的调用,然后可以在实际调用之前和之后添加一些逻辑,从而不浸入实际类. 拓展:由于代理类能在实际类调用之前和之 ...

  9. Java 动态代理是基于什么原理

    动态代理 ①动态代理概念理解 动态代理是一种方便运行时动态构建代理.动态处理代理方法调用的机制,很多场景都利用类似机制做到的,比如用来包装RPC调用.面向切面的变成(AOP) 实现动态代理的方式很多, ...

随机推荐

  1. ASP.NET的路由系统:路由映射

    总的来说,我们可以通过RouteTable的静态属性Routes得到一个基于应用的全局路由表,通过上面的介绍我们知道这是一个类型的RouteCollection的集合对象,我们可以通过调用它的MapP ...

  2. Confluence 6 的 WebDAV 客户端整合介绍

    WebDAV 允许用户通过一个 WebDAV 客户端来访问 Confluence.例如,微软 Windows 的 'My Network Places'.通过为访问的用户提供权限,这个用户可以在 Co ...

  3. Confluence 6 选择一个默认的语言

    管理员可以设置应用到你 Confluence 站点所有空间的默认语言.请注意,一个独立的用户可以在他们自己的属性中选择他们独立的语言属性. 设定默认的语言 在 Confluence 站点中修改默认的语 ...

  4. deepin 桌面突然卡死

    deepin桌面突然卡死 使用快捷键Ctrl+alt+F2 重启systemctl

  5. Ionic 2: ReferenceError: webpackJsonp is not defined

    I'm new to Ionic. I have started project with super template. But when I try to run the app in brows ...

  6. webpack2配置备份

    package.json: { "name": "leyi", "version": "1.0.0", "ma ...

  7. C++标准库和标准模板库(转)

    转自原文http://blog.csdn.net/sxhelijian/article/details/7552499 C++强大的功能来源于其丰富的类库及库函数资源.C++标准库的内容总共在50个标 ...

  8. LeetCode(86):分隔链表

    Medium! 题目描述: 给定一个链表和一个特定值 x,对链表进行分隔,使得所有小于 x 的节点都在大于或等于 x 的节点之前. 你应当保留两个分区中每个节点的初始相对位置. 示例: 输入: hea ...

  9. flower

    问题 D: flower 时间限制: 1 Sec  内存限制: 128 MB 题目描述 又是一年教师节,有n个小朋友打算去看望花老师.去看花老师当然要买花咯,不过某些土(xue)豪(ba)买了太多的花 ...

  10. python基础复习

    复习-基础 一.review-base 其他语言吗和python的对比 c vs Python c语言是python的底层实现,解释器就是由python编写的. c语言开发的程序执行效率高,开发现率低 ...