1. 总述

Focal loss主要是为了解决one-stage目标检测中正负样本比例严重失衡的问题。该损失函数降低了大量简单负样本在训练中所占的权重,也可理解为一种困难样本挖掘。

2. 损失函数形式

Focal loss是在交叉熵损失函数基础上进行的修改,首先回顾二分类交叉上损失:

是经过激活函数的输出,所以在0-1之间。可见普通的交叉熵对于正样本而言,输出概率越大损失越小。对于负样本而言,输出概率越小则损失越小。此时的损失函数在大量简单样本的迭代过程中比较缓慢且可能无法优化至最优。那么Focal loss是怎么改进的呢?

首先在原有的基础上加了一个因子,其中gamma>0使得减少易分类样本的损失。使得更关注于困难的、错分的样本。

例如gamma为2,对于正类样本而言,预测结果为0.95肯定是简单样本,所以(1-0.95)的gamma次方就会很小,这时损失函数值就变得更小。而预测概率为0.3的样本其损失相对很大。对于负类样本而言同样,预测0.1的结果应当远比预测0.7的样本损失值要小得多。对于预测概率为0.5时,损失只减少了0.25倍,所以更加关注于这种难以区分的样本。这样减少了简单样本的影响,大量预测概率很小的样本叠加起来后的效应才可能比较有效。

此外,加入平衡因子alpha,用来平衡正负样本本身的比例不均:

只添加alpha虽然可以平衡正负样本的重要性,但是无法解决简单与困难样本的问题。

lambda调节简单样本权重降低的速率,当lambda为0时即为交叉熵损失函数,当lambda增加时,调整因子的影响也在增加。实验发现lambda为2是最优。

3. 总结

作者认为one-stage和two-stage的表现差异主要原因是大量前景背景类别不平衡导致。作者设计了一个简单密集型网络RetinaNet来训练在保证速度的同时达到了精度最优。在双阶段算法中,在候选框阶段,通过得分和nms筛选过滤掉了大量的负样本,然后在分类回归阶段又固定了正负样本比例,或者通过OHEM在线困难挖掘使得前景和背景相对平衡。而one-stage阶段需要产生约100k的候选位置,虽然有类似的采样,但是训练仍然被大量负样本所主导。

Focal Loss理解的更多相关文章

  1. Focal Loss 理解

    本质上讲,Focal Loss 就是一个解决分类问题中类别不平衡.分类难度差异的一个 loss,总之这个工作一片好评就是了. 看到这个 loss,开始感觉很神奇,感觉大有用途.因为在 NLP 中,也存 ...

  2. 技术干货 | 基于MindSpore更好的理解Focal Loss

    [本期推荐专题]物联网从业人员必读:华为云专家为你详细解读LiteOS各模块开发及其实现原理. 摘要:Focal Loss的两个性质算是核心,其实就是用一个合适的函数去度量难分类和易分类样本对总的损失 ...

  3. [论文理解]Focal Loss for Dense Object Detection(Retina Net)

    Focal Loss for Dense Object Detection Intro 这又是一篇与何凯明大神有关的作品,文章主要解决了one-stage网络识别率普遍低于two-stage网络的问题 ...

  4. Focal Loss

    为了有效地同时解决样本类别不均衡和苦难样本的问题,何凯明和RGB以二分类交叉熵为例提出了一种新的Loss----Focal loss 原始的二分类交叉熵形式如下: Focal Loss形式如下: 上式 ...

  5. 【深度学习】Focal Loss 与 GHM——解决样本不平衡问题

    Focal Loss 与 GHM Focal Loss Focal Loss 的提出主要是为了解决难易样本数量不平衡(注意:这有别于正负样本数量不均衡问题)问题.下面以目标检测应用场景来说明. 一些 ...

  6. 处理样本不平衡的LOSS—Focal Loss

    0 前言 Focal Loss是为了处理样本不平衡问题而提出的,经时间验证,在多种任务上,效果还是不错的.在理解Focal Loss前,需要先深刻理一下交叉熵损失,和带权重的交叉熵损失.然后我们从样本 ...

  7. 焦点损失函数 Focal Loss 与 GHM

    文章来自公众号[机器学习炼丹术] 1 focal loss的概述 焦点损失函数 Focal Loss(2017年何凯明大佬的论文)被提出用于密集物体检测任务. 当然,在目标检测中,可能待检测物体有10 ...

  8. Focal loss论文解析

    Focal loss是目标检测领域的一篇十分经典的论文,它通过改造损失函数提升了一阶段目标检测的性能,背后关于类别不平衡的学习的思想值得我们深入地去探索和学习.正负样本失衡不仅仅在目标检测算法中会出现 ...

  9. Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection

    目录 Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Generalized Focal L ...

随机推荐

  1. 2018acm-icpc青岛站后记

    我要谢谢队友和出题人给了我这一个走出自闭的机会. 继上一个星期徐州因为1分钟的罚时痛失铜牌之后一度茶饭不思,深陷被铜牌支配的恐惧,孤注一掷将宝压到了下一站的青岛上. 幸好拿了银. 给浙大的出题人点赞, ...

  2. Java运算符和引用数据类型(Scanner、Random)

    运算符 算术运算符: 运算符 运算规则 范例 结果 + 正号 +3 3 + 加 2+3 5 + 连接字符串 “中”+“国” “中国” - 负号 int a=3;-a -3 - 减 3-1 2 * 乘 ...

  3. 信用评分卡 (part 6 of 7)

    python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...

  4. jackson工具类 对象转字符串 -- 字符串转对象

    这个一个json的工具类.用的是jackson,当然还有谷歌的gosn,阿里的fastjson ,但是jackson的感觉还是最成熟(网上大神说的...) 实现的功能很简单,对象转字符串  字符串转简 ...

  5. TPS和QPS的区别和理解【转】

    QPS:Queries Per Second意思是“每秒查询率”,是一台服务器每秒能够相应的查询次数,是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准. TPS:是Transactions ...

  6. React 记录(1)

    作为一个前端工程师,前端框架是必须会的,所以开始学习React. 学习的方法是:先实践,后图文记录. React官网:https://reactjs.org React中文网站:https://www ...

  7. linux 精简开机自启动

    centos7 精简开机自启动 ntsysv rsyslog  crond  sshd network

  8. UVA - 1401 | LA 3942 - Remember the Word(dp+trie)

    https://vjudge.net/problem/UVA-1401 题意 给出S个不同的单词作为字典,还有一个长度最长为3e5的字符串.求有多少种方案可以把这个字符串分解为字典中的单词. 分析 首 ...

  9. 【自适应波束形成】MVDR(Minimum Variance Distortionless Response )笔记

    参考: https://blog.csdn.net/qq_40981790/article/details/80143524 1. MVDR简介(Minimum Variance Distortion ...

  10. python模块之collections random

    collections 在内置数据类型(list, dict, tuple, set)的基础上,collections提供了几个额外的数据类型: Counter, deque, Orderdict, ...