1. 总述

Focal loss主要是为了解决one-stage目标检测中正负样本比例严重失衡的问题。该损失函数降低了大量简单负样本在训练中所占的权重,也可理解为一种困难样本挖掘。

2. 损失函数形式

Focal loss是在交叉熵损失函数基础上进行的修改,首先回顾二分类交叉上损失:

是经过激活函数的输出,所以在0-1之间。可见普通的交叉熵对于正样本而言,输出概率越大损失越小。对于负样本而言,输出概率越小则损失越小。此时的损失函数在大量简单样本的迭代过程中比较缓慢且可能无法优化至最优。那么Focal loss是怎么改进的呢?

首先在原有的基础上加了一个因子,其中gamma>0使得减少易分类样本的损失。使得更关注于困难的、错分的样本。

例如gamma为2,对于正类样本而言,预测结果为0.95肯定是简单样本,所以(1-0.95)的gamma次方就会很小,这时损失函数值就变得更小。而预测概率为0.3的样本其损失相对很大。对于负类样本而言同样,预测0.1的结果应当远比预测0.7的样本损失值要小得多。对于预测概率为0.5时,损失只减少了0.25倍,所以更加关注于这种难以区分的样本。这样减少了简单样本的影响,大量预测概率很小的样本叠加起来后的效应才可能比较有效。

此外,加入平衡因子alpha,用来平衡正负样本本身的比例不均:

只添加alpha虽然可以平衡正负样本的重要性,但是无法解决简单与困难样本的问题。

lambda调节简单样本权重降低的速率,当lambda为0时即为交叉熵损失函数,当lambda增加时,调整因子的影响也在增加。实验发现lambda为2是最优。

3. 总结

作者认为one-stage和two-stage的表现差异主要原因是大量前景背景类别不平衡导致。作者设计了一个简单密集型网络RetinaNet来训练在保证速度的同时达到了精度最优。在双阶段算法中,在候选框阶段,通过得分和nms筛选过滤掉了大量的负样本,然后在分类回归阶段又固定了正负样本比例,或者通过OHEM在线困难挖掘使得前景和背景相对平衡。而one-stage阶段需要产生约100k的候选位置,虽然有类似的采样,但是训练仍然被大量负样本所主导。

Focal Loss理解的更多相关文章

  1. Focal Loss 理解

    本质上讲,Focal Loss 就是一个解决分类问题中类别不平衡.分类难度差异的一个 loss,总之这个工作一片好评就是了. 看到这个 loss,开始感觉很神奇,感觉大有用途.因为在 NLP 中,也存 ...

  2. 技术干货 | 基于MindSpore更好的理解Focal Loss

    [本期推荐专题]物联网从业人员必读:华为云专家为你详细解读LiteOS各模块开发及其实现原理. 摘要:Focal Loss的两个性质算是核心,其实就是用一个合适的函数去度量难分类和易分类样本对总的损失 ...

  3. [论文理解]Focal Loss for Dense Object Detection(Retina Net)

    Focal Loss for Dense Object Detection Intro 这又是一篇与何凯明大神有关的作品,文章主要解决了one-stage网络识别率普遍低于two-stage网络的问题 ...

  4. Focal Loss

    为了有效地同时解决样本类别不均衡和苦难样本的问题,何凯明和RGB以二分类交叉熵为例提出了一种新的Loss----Focal loss 原始的二分类交叉熵形式如下: Focal Loss形式如下: 上式 ...

  5. 【深度学习】Focal Loss 与 GHM——解决样本不平衡问题

    Focal Loss 与 GHM Focal Loss Focal Loss 的提出主要是为了解决难易样本数量不平衡(注意:这有别于正负样本数量不均衡问题)问题.下面以目标检测应用场景来说明. 一些 ...

  6. 处理样本不平衡的LOSS—Focal Loss

    0 前言 Focal Loss是为了处理样本不平衡问题而提出的,经时间验证,在多种任务上,效果还是不错的.在理解Focal Loss前,需要先深刻理一下交叉熵损失,和带权重的交叉熵损失.然后我们从样本 ...

  7. 焦点损失函数 Focal Loss 与 GHM

    文章来自公众号[机器学习炼丹术] 1 focal loss的概述 焦点损失函数 Focal Loss(2017年何凯明大佬的论文)被提出用于密集物体检测任务. 当然,在目标检测中,可能待检测物体有10 ...

  8. Focal loss论文解析

    Focal loss是目标检测领域的一篇十分经典的论文,它通过改造损失函数提升了一阶段目标检测的性能,背后关于类别不平衡的学习的思想值得我们深入地去探索和学习.正负样本失衡不仅仅在目标检测算法中会出现 ...

  9. Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection

    目录 Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Generalized Focal L ...

随机推荐

  1. 「Python」6种python中执行shell命令方法

    用Python调用Shell命令有如下几种方式: 第一种: os.system("The command you want"). 这个调用相当直接,且是同步进行的,程序需要阻塞并等 ...

  2. CentOS 7 的安装

    CentOS 7的安装 --------------------------- 安装前的准备: 1.去官网或是去网上下载好CentOS 7的镜像文件 下载主页: https://www.centos. ...

  3. 20165232第4次实验《Android程序设计》实验报告

    20165232第4次实验<Android程序设计>实验报告 一.实验报告封面 一.实验报告封面 课程:Java程序设计 班级:1652班 姓名:何彦达 学号:20165232 指导教师: ...

  4. flask模版继承和block

    模版继承和block的目的就是为了减少前端代码量 flask_ones.py #encoding:utf-8 from flask import Flask,url_for,redirect,rend ...

  5. Linux CGroup

    catalog . 引言 . Cgroup安装配置 . Cgroup使用方式 . CGroup的子系统 1. 引言 我们已经讨论了Linux下命名空间(Namespace)的基本知识,详情请参阅另一篇 ...

  6. MVC项目报错 ”基础提供程序在 Open 上失败”

    问题: 今天将一个.net mvc项目拷贝到另一台电脑上,重新部署的时候,出现以下异常信息: “System.Data.Entity.Core.EntityCommandExecutionExcept ...

  7. STM32学习笔记:【001】时钟树与RCC

    导言 如果学过单片机的同学应该不会陌生,学习51单片机时最经常听到的就是“最小系统”. 最小系统里面少不了晶振,否则单片机无法工作. 单片机需要晶振(时钟源)来工作,那么对于STM32芯片同样如此. ...

  8. EL表达式遍历集合获取下标

    如题,HTML页面很多时候需要循环遍历一个集合,并且获得集合元素得下标做判断,或者把下标传递给后台作为参数 那么我们就需要用到EL表达式的varStatus 代码一:<c:forEach var ...

  9. ACM-ICPC 2018 焦作赛区网络预赛 I Save the Room(水题)

    https://nanti.jisuanke.com/t/31718 题意 问能否用1*1*2的长方体填满a*b*c的长方体. 分析 签到.如果a.b.c都是奇数,一定不能. #include< ...

  10. HDU 1064(求平均数 **)

    题意是求 12 个浮点数的平均数,这题不用读题,看到运行时间为 200 ms 再看下样例就能猜出题目的要求了,代码如下: #include <bits/stdc++.h> using na ...