题目:Least common multiple

链接:http://acm.hdu.edu.cn/showproblem.php?pid=4913

题意:有一个集合s,包含x1,x2,...,xn,有xi=2^ai * 3^bi,然后给你a数组和b数组,求s所有子集合的最小公倍数之和。比如S={18,12,18},那么有{18},{12},{18},{18,12},{18,18},{12,18},{18,12,18},所以答案是174。

思路:

  1. 最小公倍数,因为xi只包含两个质因子2、3,那么子集合的最小公倍数其实就是2^max(a[]) * 3^max(b[])。max(a[])就是子集合相关的a数组集合中最大的ai。

  2. 先简化题目,如果题目中的xi = 2^ai,那么可以对x数组进行从小到大排序。那么 lcm(x0,x1,...,xi)=xi,又 i 前面包含xi的子集合数量为2^(i-1)(其实就是xj(j<i)放入集合为1,不放入集合为0),那么最后的答案为 ∑ (2^ i-1 ) * xi,也就是ans[i]=ans[i-1]+2^(i-1)*2^(ai)

  3. 回归题目,题目中多了b数组,那么我们可以按b排序,令 x= i 前面 a的值小于ai的数量,令p1、p2、...、pk为i 前面 a的值比ai大的 位置。那么ans[i] = ans[i-1] + ( 2^x * 2^ai + 2^x * 2^ap1 + 2^(x+1) * 2^ap2 + ... + 2^(x+k-1) * 2^apk ) * 3^bi。

  3中的递推公式可以如下理解:

  推到i 就表示i 必选,那么i 前面最小公倍数为2^ai * 3^bi 的有 2^x 个,就是 x 个 a的值比ai小的xj 选与不选的问题了。比ai大的不选(因为选了的话,最小公倍数就不是xi了)

  然后xp1必选,也就是 第一个a的值比ai大的 xj必选,又 xi 必选,剩下x个比ai小的可选可不选,有2^x种情况,这2^x种情况的最小公倍数为2^ap1 * 3^bi。

  再接着xp2必选(注意:xi 还是必选,但xp1可选可不选),有2^(x+1)种情况,他们的最小公倍数为2^ap2 * 3^bi。

  。。。

  上面的递推公式只是告知ans[i]的算法,当然不能直接照样计算,因为即使你可以很容易得到 i 前面a值比ai大的位置,最坏情况下(b递增,a递减),时间复杂度也高达O(n*n)。

  现在我们可以维护2^x * 2^aj(其实就是维护那个x值),我们建一个线段树(离散型的),孩子结点(i,i)对应a值排名为i 的xj(x数组是按b排序的),线段树的结点包含sum、cnt和mulCnt三个属性,当遍历(从1-n)到j 时,xj对应的a值排名i的线段树结点cnt置1,sum置为2^x * 2^aj,然后向上更新,现在如果问x值,就可以用线段树很快地得出来。就是1-i 中cnt已经是1的数量。而2^x * 2^ap1 + 2^(x+1) * 2^ap2 + ... + 2^(x+k-1) * 2^apk可以通过维护得到,就是说每次计算完,从i+1到n的已经置为1(就是前面已经出现过的)的sum值乘2(因为比他们小的又多了一个aj,就是x+1)。

AC代码:

 #include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#define Mod 1000000007
using namespace std;
typedef long long LL; LL qpow(LL a,LL b)
{
LL ret=;
while(b)
{
if(b&) ret=ret*a%Mod;
a=a*a%Mod;
b>>=;
}
return ret;
} struct X
{
int id;
int a,b;
int ra; //a的排名
};
bool cmp1(X a,X b) //根据a排序
{
return a.a<b.a;
}
bool cmp2(X a,X b) //根据b排序
{
return a.b<b.b;
} X x[]; struct Node
{
LL sum,cnt;
LL mulCnt; //该区间乘了多少个2
int l,r;
int mid()
{
return (l+r)/;
}
};
Node v[];
void build(int l,int r,int rt)
{
v[rt].sum=v[rt].cnt=;
v[rt].mulCnt=;
v[rt].l=l;
v[rt].r=r;
if(l==r) return ;
build(l,v[rt].mid(),rt<<);
build(v[rt].mid()+,r,rt<<|);
} void push_down(int rt,bool flag)
{
if(v[rt].l==v[rt].r)
{
v[rt].mulCnt=;
return ;
}
v[rt<<].mulCnt+=v[rt].mulCnt;
v[rt<<|].mulCnt+=v[rt].mulCnt;
if(flag==)
{
v[rt<<].sum=v[rt<<].sum*qpow(,v[rt<<].mulCnt)%Mod;
push_down(rt<<,);
v[rt<<|].sum=v[rt<<|].sum*qpow(,v[rt<<|].mulCnt)%Mod;
push_down(rt<<|,);
}
v[rt].mulCnt=;
} LL look_cnt(int l,int r,int rt)
{
if(l==v[rt].l&&r==v[rt].r) return v[rt].cnt;
int mid=v[rt].mid();
if(l>mid) return look_cnt(l,r,rt<<|);
else if(r<=mid) return look_cnt(l,r,rt<<);
else return look_cnt(l,mid,rt<<)+look_cnt(mid+,r,rt<<|);
} LL look_sum(int l,int r,int rt)
{
if(l==v[rt].l&&r==v[rt].r)
{
v[rt].sum=v[rt].sum*qpow(2LL,v[rt].mulCnt)%Mod;
push_down(rt,);
return v[rt].sum;
}
push_down(rt,);
int mid=v[rt].mid();
LL ret;
if(l>mid) ret=look_sum(l,r,rt<<|);
else if(r<=mid) ret=look_sum(l,r,rt<<);
else ret=(look_sum(l,mid,rt<<)+look_sum(mid+,r,rt<<|))%Mod;
v[rt].sum=(v[rt<<].sum+v[rt<<|].sum)%Mod;
return ret;
} void update(int ra,int a,int rt)
{
if(v[rt].l==v[rt].r)
{
v[rt].cnt=;
LL x = ra== ? :look_cnt(,ra-,); //x 就是在a的前面(按b排序后)排名比a小的数量
v[rt].sum=qpow(,x+a);
v[rt].mulCnt=;
return ;
}
push_down(rt,);
if(ra<=v[rt].mid())
update(ra,a,rt<<);
else update(ra,a,rt<<|);
v[rt].cnt=v[rt<<].cnt+v[rt<<|].cnt;
v[rt].sum=(v[rt<<].sum+v[rt<<|].sum)%Mod;
} void mul(int l,int r,int rt)
{
if(v[rt].l==l&&v[rt].r==r)
{
v[rt].mulCnt++;
v[rt].sum=v[rt].sum*qpow(2LL,v[rt].mulCnt)%Mod;
push_down(rt,);
return ;
}
push_down(rt,);
if(r<=v[rt].mid()) mul(l,r,rt<<);
else if(l>v[rt].mid()) mul(l,r,rt<<|);
else
{
mul(l,v[rt].mid(),rt<<);
mul(v[rt].mid()+,r,rt<<|);
}
v[rt].sum=(v[rt<<].sum+v[rt<<|].sum)%Mod;
} int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
build(,n-,);
for(int i=;i<n;i++)
{
scanf("%d%d",&x[i].a,&x[i].b);
x[i].id=i;
}
sort(x,x+n,cmp1);
for(int i=;i<n;i++) x[i].ra=i;
sort(x,x+n,cmp2);
LL ans=;
for(int i=;i<n;i++)
{
update(x[i].ra,x[i].a,);
ans = (ans + look_sum(x[i].ra,n-,)*qpow(3LL,x[i].b))%Mod;
if(x[i].ra!=n-) mul(x[i].ra+,n-,);
}
printf("%I64d\n",ans);
}
return ;
}

HDU 4913 Least common multiple的更多相关文章

  1. HDU 4913 Least common multiple(2014 Multi-University Training Contest 5)

    题意:求所有自己的最小公倍数的和. 该集合是  2^ai  * 3^bi 思路:线段树. 线段树中存的是  [3^b * f(b)]   f(b)表示 因子3 的最小公倍数3的部分  为 3^b的个数 ...

  2. 背包系列练习及总结(hud 2602 && hdu 2844 Coins && hdu 2159 && poj 1170 Shopping Offers && hdu 3092 Least common multiple && poj 1015 Jury Compromise)

    作为一个oier,以及大学acm党背包是必不可少的一部分.好久没做背包类动规了.久违地练习下-.- dd__engi的背包九讲:http://love-oriented.com/pack/ 鸣谢htt ...

  3. HDU 1019 Least Common Multiple【gcd+lcm+水+多个数的lcm】

    Least Common Multiple Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot ...

  4. HDU 3092 Least common multiple 01背包

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3092 Least common multiple Time Limit: 2000/1000 MS ...

  5. hdu 2028 Lowest Common Multiple Plus(最小公倍数)

    Lowest Common Multiple Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  6. ACM hdu 1019 Least Common Multiple

    Problem Description The least common multiple (LCM) of a set of positive integers is the smallest po ...

  7. ACM学习历程—HDU 3092 Least common multiple(数论 && 动态规划 && 大数)

    Description Partychen like to do mathematical problems. One day, when he was doing on a least common ...

  8. HDU 2028 Lowest Common Multiple Plus

    http://acm.hdu.edu.cn/showproblem.php?pid=2028 Problem Description 求n个数的最小公倍数.   Input 输入包含多个测试实例,每个 ...

  9. HDU - 1019 - Least Common Multiple - 质因数分解

    http://acm.hdu.edu.cn/showproblem.php?pid=1019 LCM即各数各质因数的最大值,搞个map乱弄一下就可以了. #include<bits/stdc++ ...

随机推荐

  1. Python的datetime模块分析

    datetime模块用于是date和time模块的合集,datetime有两个常量,MAXYEAR和MINYEAR,分别是9999和1. datetime模块定义了5个类,分别是 1.datetime ...

  2. (转)Spring Boot (十九):使用 Spring Boot Actuator 监控应用

    http://www.ityouknow.com/springboot/2018/02/06/spring-boot-actuator.html 微服务的特点决定了功能模块的部署是分布式的,大部分功能 ...

  3. CentOS 7下安装Python3.6

    CentOS 7下安装Python3.6.4   CentOS 7下安装Python3.5 •安装python3.6可能使用的依赖 yum install openssl-devel bzip2-de ...

  4. centos7下kubernetes(8.kubernetes Failover)

    上一节我们运行的3个容器 其中有两个是运行在node2上一个运行在node1上,现在我们关闭node1,观察node1上的容器会发生什么变化 目前node1已经处于notready状态 现在我们查看一 ...

  5. C++ 参数传值 与 传引用

    参数传值 在 C++ 中,函数参数的传递有两种方式:传值和传引用.在函数的形参不是引用的情况下,参数传递方式是传值的.传引用的方式要求函数的形参是引用.“传值”是指,函数的形参是实参的一个拷贝,在函数 ...

  6. springboot设置session超时和session监听

    2.0版本以下设置session超时时间 1.  springboot 2.0版本以下配置session超时 1.1 application.properties配置文件: spring.sessio ...

  7. P2080 增进感情(背包DP)

    思路:将好感度x+y作为体积, 幸福度x-y作为作为价值, 然后就是一个经典的背包问题了.emmmmm,还可以特判一下,因为幸福度为0时就是最小了,没有必要看后面的了吧. 其实,我自己做的时候,沙雕的 ...

  8. package-info.java的使用

    一.引入 上文中,提到了注解类JyzTargetPackage可以定义为@Target(ElementType.PACKAGE),可是在被注解类里我无论怎么加,编译器都报错,于是引入了package- ...

  9. 初学Python——字典

    一.定义 什么是字典? 字典是一种数据类型,是一系列数据的组合. 每一个数据单元都分为key和value,key也称主键,具有唯一性,不可重复.value可以理解成是key对应的值. info={ 1 ...

  10. JUnit5 快速指南

    JUnit5 快速指南 version: junit5 1. 安装 2. JUnit 注解 3. 编写单元测试 3.1. 基本的单元测试类和方法 3.2. 定制测试类和方法的显示名称 3.3. 断言( ...