Batch_Size对网络训练结果的影响
最近在跑一些网络时发现,训练完的网络在测试集上的效果总是会受Batch_Size 大小的影响。这种现象跟以往自己所想象的有些出入,于是出于好奇,各种搜博客,大致得出了自己想要的答案,现写一篇博客记录一下。
在训练过程中,一般有三种方式来从数据集中抽取数据,更新参数。一种是取所有的样本算出梯度(Full Batch Learning),另一种是每次迭代只取一个样本进行更新,也即在线学习(Online Learning),取Batch_Size = 1,还有一种是批梯度下降法(Mini-batches Learning)。对于取全数据集的方式来说,其确定的梯度下降方式代表样本总体,因此能最准确地朝着极值方向更新。但由于深度学习常用的数据集往往是海量的,所以采用全数据集下降的方式通常难以实现。而在线学习的方式则是每次训练只取一个样本,这样的训练方式往往会导致梯度更新的方向不那么准确。而批梯度下降就是前面所述两种方法的折中的方式,即每次迭代取一部分样本进行更新。我们下面讨论的就是使用批梯度下降方法设置Batch_size的情况。
那么Batch_Size究竟取多少最好呢?首先来说说Batch_Size对收敛速度的影响。一般来说,增大Batch_Size,所带来的训练时的标准差并不是线性增长的,比如训练一个样本的标准差为σ,那么取Batch_Size=n所带来的标准差为σ/√n,而非σ/n。因此,如果采用多个训练样本来算梯度的话,其计算量是线性增长的,但标准差并不能线性降低。所以Batch_Size越大,其收敛所需的迭代次数会减少,但每次迭代的计算时间也会增多,总体来看的话,耗费的总时间反而比使用少量样本来训练要多。但是,由于我们跑网络的时候可以用GPU并行计算,所以在一定范围内增大Batch_size,跑一次iteration的时间其实是差不多的,因此适当增加Batch_size大小,能让网络更快收敛。
但是也不是说Batch_size越大越好,我们知道网络最终收敛的时候并不总是在绝对最小值区域,很多时候是陷入了局部最小值,特别是我们常说的“鞍部”。这时候,如果Batch_size调得较小的话,其每次迭代下降的方向并不是最准确的,loss是在小范围内震荡下降的,这反而有利于跳出局部最小值,从而寻找下一个loss更低的区域。还有一种说法,何凯明大神的论文Rethinking ImageNet pre-training也提到过,如果你的网络中使用了BN层的话,而BN层的计算在batch size较小时受batch size参数影响较大,batch size越小,参数的统计信息越不可靠,也会影响最终的效果。因此调小Batch_size可以有效防止陷入局部最小值,但是由于BN层的存在也会影响最终的效果,同时Batch_size调得过小也容易导致网络不收敛。所以在实际跑代码的过程中你就会发现,对于某些任务比如图像分割,调Batch_size是个很玄学的过程。。。
参考博客:
Batch_Size对网络训练结果的影响的更多相关文章
- 图像分割实验:FCN数据集制作,网络模型定义,网络训练(提供数据集和模型文件,以供参考)
论文:<Fully Convolutional Networks for Semantic Segmentation> 代码:FCN的Caffe 实现 数据集:PascalVOC 一 数据 ...
- Pytorch半精度浮点型网络训练问题
用Pytorch1.0进行半精度浮点型网络训练需要注意下问题: 1.网络要在GPU上跑,模型和输入样本数据都要cuda().half() 2.模型参数转换为half型,不必索引到每层,直接model. ...
- 卷积网络训练太慢?Yann LeCun:已解决CIFAR-10,目标 ImageNet
原文连接:http://blog.kaggle.com/2014/12/22/convolutional-nets-and-cifar-10-an-interview-with-yan-lecun/ ...
- 如何绘制caffe网络训练曲线
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/51774966 当我们设计好网络结构后, ...
- Caffe-python interface 学习|网络训练、部署、測试
继续python接口的学习.剩下还有solver.deploy文件的生成和模型的測试. 网络训练 solver文件生成 事实上我认为用python生成solver并不如直接写个配置文件,它不像net配 ...
- Pytorch 分割模型构建和训练【直播】2019 年县域农业大脑AI挑战赛---(四)模型构建和网络训练
对于分割网络,如果当成一个黑箱就是:输入一个3x1024x1024 输出4x1024x1024. 我没有使用二分类,直接使用了四分类. 分类网络使用了SegNet,没有加载预训练模型,参数也是默认初始 ...
- Wide & Deep的OneFlow网络训练
Wide & Deep的OneFlow网络训练 HugeCTR是英伟达提供的一种高效的GPU框架,专为点击率(CTR)估计训练而设计. OneFlow对标HugeCTR搭建了Wide & ...
- MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(三)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网 ...
- 小白也能弄得懂的目标检测YOLO系列之YOLOv1网络训练
上期给大家介绍了YOLO模型的检测系统和具体实现,YOLO是如何进行目标定位和目标分类的,这期主要给大家介绍YOLO是如何进行网络训练的,话不多说,马上开始! 前言: 输入图片首先被分成S*S个网格c ...
随机推荐
- js中this的绑定规则及优先级
一. this绑定规则 函数调用位置决定了this的绑定对象,必须找到正确的调用位置判断需要应用下面四条规则中的哪一条. 1.1 默认绑定 看下面代码: function foo() { cons ...
- C# 消息队列 RabbitMQ
1.引言 RabbitMQ——Rabbit Message Queue的简写,但不能仅仅理解其为消息队列,消息代理更合适. RabbitMQ 是一个由 Erlang 语言开发的AMQP(高级消息队列协 ...
- linux下的dhcp服务器实现
一.得到udhcpd(udhcp服务端): 1.解压busybox 2.配置busybox Networking Utilities——> [*] udhcp server(udhcpd) [* ...
- python 并发编程 操作系统 进程 并发.并行 及 同步/异步,阻塞/非阻塞
操作系统: 多道技术背景: 提高工作效率(充分利用IO阻塞的时间) 同时执行多个任务 多道技术 空间复用:充分的利用内存空间 时间复用:充分利用IO阻塞时间 分时系统: 并发:提高了程序的工作效率 两 ...
- Linux - 其他命令
其他命令 目标 查找文件 find 软链接 ln 打包和压缩 tar 软件安装 apt-get 01. 查找文件 find 命令功能非常强大,通常用来在 特定的目录下 搜索 符合条件的文件 序号 命令 ...
- Tomcat 配置MySQL连接池
<!--配置mysql数据库的连接池, 需要做的额外步骤是将mysql的Java驱动类放到tomcat的lib目录下 maxIdle 连接池中最多可 ...
- 在vscode中使用eslint
一.vs中安装eslint插件 二.npm 全局安装 eslint sudo npm i -g eslint 三.vs终端运行eslint --init 四.在vscode的setting中设置 ...
- python包的一些问题
1查看python包的版本 2 卸载包的方法 3指定python包的安装版本 参考网址 https://blog.csdn.net/colourful_sky/article/details/8018 ...
- linux上安装MongoDB副本集(带keyfile安全认证以及用户权限)
搭建前准备 MongoDB版本:4.0 主要参考搭建MongoDB副本集网站:https://www.jianshu.com/p/f021f1f3c60b 安装之前最好先确定一下几点: 防火墙关闭 M ...
- Visual Studio Installer 设置属性简介
1. 创建安装项目 2.创建项目完成之后,具体各类操作和文件的添加需要自行设置 2.1文件系统 针对文件安装位置,内容进行设置.包括文件,项目输出,程序集 2.2.文件类型(不常用) 设置文件后缀名 ...